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Simple Summary: The role of regulatory T cells (Tregs) in gastric cancer (GC) is still controversial
and poorly understood. GC patients have increased numbers of Tregs in peripheral blood and among
tumor infiltrating lymphocytes; however, their prognostic value depends on specific tumor features
(e.g., tumor location and/or microsatellite instability status). We found that Tregs might induce
membrane expression of IL2Rα in intestinal-type GC cells, which associates with MAPK signaling
pathway activation and spheroid growth. Moreover, Tregs accumulate at early steps of intestinal-type
GCs progression, when tumors are starting to grow through the stomach wall, and do not present
vascular and perineural invasion. Our findings suggest a novel non-immunosuppressive role of Treg
cells in intestinal-type GC, which may unlock novel therapeutic immuno-oncology strategies for
intestinal-type GC or other tumors with similar immune context.

Abstract: Gastric cancer (GC) patients display increased regulatory T cell (Tregs) numbers in pe-
ripheral blood and among tumor-infiltrating lymphocytes. Nevertheless, the role of Tregs in GC
progression remains controversial. Here, we sought to explore the impact of Tregs in GCs with
distinct histology, and whether Tregs can directly influence tumor cell behavior and GC develop-
ment. We performed a comprehensive immunophenotyping of 82 human GC cases, through an
integrated analysis of multispectral immunofluorescence detection of T cells markers and patient
clinicopathological data. Moreover, we developed 3D in vitro co-cultures with Tregs and tumor cells
that were followed by high-throughput and light-sheet imaging, and their biological features studied
with conventional/imaging flow cytometry and Western blotting. We showed that Tregs located at
the tumor nest were frequent in intestinal-type GCs but did not associate with increased levels of
effector T cells. Our in vitro results suggested that Tregs preferentially infiltrated intestinal-type GC
spheroids, induced the expression of IL2Rα and activation of MAPK signaling pathway in tumor
cells, and promoted spheroid growth. Accumulation of Tregs in intestinal-type GCs was increased at
early stages of the stomach wall invasion and in the absence of vascular and perineural invasion. In
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this study, we proposed a non-immunosuppressive mechanism through which Tregs might directly
modulate GC cells and thereby promote tumor growth. Our findings hold insightful implications for
therapeutic strategies targeting intestinal-type GCs and other tumors with similar immune context.

Keywords: tumor-infiltrating CD4 T cells; regulatory T cells; molecular regulation; gastric cancer

1. Introduction

Recent advances on the molecular aspects of gastric cancer (GC) have provided invalu-
able knowledge that led to the identification of new actionable targets and therapies [1].
Targeted treatments and immunotherapies are mainly offered to advanced cancer patients
and have, so far, minimally improved GC prognosis, justifying why GC ranks as the third
leading cause of cancer-related deaths worldwide [2]. Gastric tumors with high mutation
load, microsatellite instability (MSI) or positive for Epstein–Barr viral infection are poten-
tially immunogenic, and thus amenable for immunotherapy based on checkpoint inhibitors
(e.g., anti- PD-1/PD-L1) [3,4]. Finding additional contexts for immuno-related therapies is
an opportunity that is worth investigating further.

Regulatory T cells (Tregs) are CD4+ T cells characterized by the surface expression of
IL2Rα, and nuclear expression of the transcription factor FoxP3. Tregs are endowed with
immunosuppressive activity that enforces peripheral tolerance and maintains immunologi-
cal homeostasis [5]. However, in cancer, the immunosuppressive environment promoted by
Tregs withholds the antitumor immune response, hence promoting tumor progression and
dissemination [6,7]. In GC patients, peripheral blood and tumor-infiltrating lymphocytes
are enriched in Tregs [8–12], which associates with increased tumor stage, poor prognosis
and reduced patient survival [13–17]. Nevertheless, other studies have shown that tumor
infiltrating Tregs may also be associated with favorable prognosis, specifically in patients
carrying tumors from the cardia or with MSI [18–20]. Hence, the role of Tregs in GC pro-
gression remains poorly understood and highly controversial. Further, it is also unexplored
in GC whether Tregs may promote tumor progression via non-immunological mechanisms,
as described in other cancer models [21,22]. Thus, we sought to explore the contribution of
Tregs in GCs with distinct histology, and whether Tregs can directly impact tumor cells to
promote GC progression.

To address this, we integrated the results of T cell immunophenotyping analysis with
clinicopathological features of 82 GC patients. This analysis unveiled an enrichment of
Tregs specifically in intestinal- and indeterminate-type GC, as compared to diffuse-type GC.
Furthermore, our data suggests that a population of Tregs is present at the tumor nest of
intestinal-type GC independently of the prevalence of effector T cells. Given these results,
and to understand whether Tregs may actively modulate the phenotype of tumor cells, we
established and explored 3D co-cultures of Tregs with intestinal- or diffuse-type GC cell
lines. We found that Tregs actively infiltrate intestinal-type GC spheroids. Upon co-culture
with Tregs, intestinal-type GC cells acquire expression of IL2Rα at the cell membrane,
have increased activation of MAPK signaling pathway and spheroid growth. Furthermore,
we found an enrichment of Tregs in early-stage intestinal-type GC, and in the absence of
vascular and perineural invasion.

Altogether, our data suggests a direct effect of Tregs on tumor cells that may be
particularly important in early stages of intestinal-type GC progression.

2. Results

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation as well as the experimental
conclusions that can be drawn.
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2.1. Intestinal-Type GC Maintain a Population of Tregs at the Tumor Nest Independently on the
Prevalence of Effector T Cells

To investigate the immune T cell landscape within GC, we performed immunophe-
notyping of 82 patient samples. Each tumor section was stained simultaneously for a
panel of seven markers, including CD3, CD8, and FoxP3 T cell-associated markers, cy-
tokeratin to label epithelial tumor cells and DAPI for nuclei detection (Figure 1a,b). We
focused the analysis on three major phenotypes, defined as follows: (1) Helper T cells,
CD3+CD8-FoxP3- cells (Figure 1c); (2) Cytotoxic T cells, CD3+CD8+ cells (Figure 1d); and
(3) Tregs, CD3+CD8-FoxP3+ cells (Figure 1e). Cells expressing cytokeratin were excluded
when building the T cell profiles. Poor performance of anti-IL2Rα antibodies in the im-
munofluorescence staining hampered the analysis of IL2Rα expression in tissue samples.
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fuse-type (b), obtained by multispectral imaging. Scale bar: 100 μm. (c–e) Main T cell populations identified in the GC 
microenvironment based on the positivity for CD3, CD8, and FoxP3 cell markers. (f) Relative numbers of helper, cytotoxic 
T cells and Tregs, according to the histologic properties of the tumor: intestinal-type, n = 41; diffuse-type, n = 15; mixed-
type, n = 11; indeterminate-type, n = 15 patients. Box and whiskers represent median ± 10 to 90 percentile. * p < 0.05, ** p < 
0.01; Kruskal–Wallis test with Dunn’s multiple comparison test. 
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found that indeterminate-type MSS cases have more helper, cytotoxic cells and Tregs as 
compared to intestinal-type MSS cases (p = 0.0261, p = 0.0349 and p = 0.0026, respectively); 
display increased numbers of helper T cells and Tregs in comparison to diffuse-type MSS 
(p = 0.0297 and p = 0.0002, respectively); and increased number of Tregs in comparison to 
mixed-type MSS (p = 0.0065; Figure 2b–d). Although, indeterminate-type MSS cases had 
increased number of Tregs as compared to MSI cases (p = 0.0444; Figure 2d), the Treg/cy-
totoxic T cell and Treg/helper T cell ratios were not significantly changed (Figure 2e,f). 
Overall, these results suggested that indeterminate-type MSS cases elicit stronger immune 
responses, as compared to the other histotypes, and that the increased accumulation of 

Figure 1. Characterization of the immune T cell landscape in gastric cancer (GC) tissue sections. (a,b) Representative
composite and single-staining immunofluorescence images of the two main histological GC types, intestinal-type (a) and
diffuse-type (b), obtained by multispectral imaging. Scale bar: 100 µm. (c–e) Main T cell populations identified in the GC
microenvironment based on the positivity for CD3, CD8, and FoxP3 cell markers. (f) Relative numbers of helper, cytotoxic T
cells and Tregs, according to the histologic properties of the tumor: intestinal-type, n = 41; diffuse-type, n = 15; mixed-type,
n = 11; indeterminate-type, n = 15 patients. Box and whiskers represent median ± 10 to 90 percentile. * p < 0.05, ** p < 0.01;
Kruskal–Wallis test with Dunn’s multiple comparison test.
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To disclose a potential association between T cell phenotypes and GC histology, we
evaluated the density of each cell population according to GC histological types (Figure 1f;
Supplementary File S1). We observed that whereas the presence of helper and cytotoxic T
cells only slightly changed across GC histological types, Tregs were significantly enriched
in intestinal- and indeterminate-type GC, as compared to diffuse-type GC (p = 0.0175 and
p = 0.0028, respectively; Figure 1g).

We further assessed whether these differences could be explained through a differen-
tial prevalence of MSI cases within each histotype. Whilst 37% and 40% of intestinal- and
indeterminate-type GC cases were MSI, only 13% and 18% of diffuse- and mixed-type GC
had this phenotype (Figure 2a). Given these differences, we re-assessed the distribution of
T cell populations considering both GC histotype and MSI status (Figure 2b–f). We found
that indeterminate-type MSS cases have more helper, cytotoxic cells and Tregs as compared
to intestinal-type MSS cases (p = 0.0261, p = 0.0349 and p = 0.0026, respectively); display
increased numbers of helper T cells and Tregs in comparison to diffuse-type MSS (p = 0.0297
and p = 0.0002, respectively); and increased number of Tregs in comparison to mixed-type
MSS (p = 0.0065; Figure 2b–d). Although, indeterminate-type MSS cases had increased
number of Tregs as compared to MSI cases (p = 0.0444; Figure 2d), the Treg/cytotoxic T cell
and Treg/helper T cell ratios were not significantly changed (Figure 2e,f). Overall, these
results suggested that indeterminate-type MSS cases elicit stronger immune responses, as
compared to the other histotypes, and that the increased accumulation of Tregs was likely
the result of an accumulation of effector T cell populations. As for intestinal-type GC, MSS
cases displayed significantly lower numbers of cytotoxic T cells (p = 0.0014), but not of
Tregs, as compared to MSI cases (Figure 2c,d). This led to a higher Treg/cytotoxic T cell
ratio in intestinal-type MSS cases comparing with MSI cases (p = 0.0414; Figure 2f).

To further dissect this unbalanced ratio in intestinal-type GC, we characterized the
distribution of T cell populations regarding their location at the stroma or tumor nest areas
(Figure 2g–j; Supplementary Figure S1). We observed that the increased Treg/cytotoxic
T cell ratio in MSS tumors was maintained both at the stroma and tumor nest regions
(p = 0.0274 and p = 0.0109, respectively; Figure 2g,h). Of notice, several MSS intestinal-type
tumors showed particularly high numbers of Tregs comparing to the numbers of cytotoxic
T cells, at the tumor nest (Figure 2h). Moreover, we observed that the density of Tregs was
comparable at the tumor nest of MSS and MSI intestinal-type GCs, while the density of
cytotoxic T cells was only increased at the tumor nest of MSI tumors (Figure 2i,j). These
observations may indicate that the cytotoxic T cell density is not being accompanied by
an increased Treg density at the tumor nest, as observed for the stroma region. This data
further suggests that both MSS and MSI cases have a population of Tregs, in the close
vicinity of tumor cells, that does not seem to have a purely immunosuppression role, as
their density does not accompany the increase in cytotoxic T cells.

Altogether, these observations support the hypothesis that Tregs may have a non-
immunosuppressive activity by directly affecting GC tumor cells with intestinal histology.
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Figure 2. Distribution of T cell populations in MSS and microsatellite instability (MSI) GC tumors. (a) Relative and absolute
frequency of MSS and MSI cases for each GC histological type. (b–f) Relative numbers of helper (b), cytotoxic T cells (c),
Tregs (d), and Tregs normalized to helper T cells (e) and cytotoxic T cells (f), according to the MSI status and tumor histology.
(g,h) Relative number of Tregs normalized to cytotoxic and helper T cells within the stroma (g) and tumor nest (h) areas of
intestinal-type GC cases, according to MSI status. Relative number of Tregs, cytotoxic T cells, and helper T cells within the
stroma (i) and tumor nest (j) areas of intestinal-type GC cases, according to MSI status. See Supplementary Figure S1 for a
visual description of stroma and tumor nest areas. Box and whiskers represent median ± 10 to 90 percentile. * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001. Two-way ANOVA with Tukey’s/Sidak’s multiple comparisons test (b–f) and
Mann–Whitney U test (g–j).

2.2. Tregs Actively Infiltrate Intestinal-Type GC Spheroids

To scrutinize the potential interactions between Tregs and tumor cells, we established
direct 3D in vitro co-cultures of T cells, isolated from the peripheral blood of healthy donors,
with GC cell lines (intestinal-type MKN74, and diffuse-type MKN45). Given the impossi-
bility of using intracellular FoxP3 for cell sorting, we isolated CD3+CD4+CD127−IL2Rα+

T cells, which are highly enriched in Tregs, from the peripheral blood of healthy donors
(Supplementary Figure S2). As a control, CD3+CD4+CD127+IL2Rα− cells (conventional
CD4 T cells) were also collected from the same donors.
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T cells (either Tregs or conventional T cells) were added to GC spheroids recapitulating
intestinal- or diffuse-type GC (Figure 3a). Co-cultures, imaged with time-lapse for 48 h, evi-
denced distinct Treg infiltration capacities depending on GC histology (Figure 3b,c). Whilst
Tregs accumulated inside the intestinal-type GC spheroids (Figure 3b), they remained
preferentially at the periphery of diffuse-type spheroids (Figure 3c). In both situations,
the accumulation of Tregs was proportional to the number of Tregs in the co-culture
(Figure 3b,c). As far as conventional T cells are concerned, accumulation either inside or at
the periphery of spheroids was very low as compared to that of Tregs (Figure 3d,e). These
observations support the findings from patients’ tumors and reinforce specific crosstalk be-
tween Tregs and intestinal-type GC cells. Active infiltration of intestinal-type GC spheroids
by Tregs was further validated through a four-angle analysis of the spheroids at distinct
time-points (Figure 3f–l; Supplementary Figure S3; Supplementary Videos S1–S3). This
analysis revealed that only a small fraction of Tregs was actively infiltrating the spheroids
(Figure 3f–l), recapitulating the proportion of Treg infiltration observed in patients’ intesti-
nal tumors (Figure 1a).
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Figure 3. T cell infiltration of GC spheroids. (a) Schematic representation of the co-culture timeline.
Spheroids (green) resembling intestinal- and diffuse-type GC were independently cultured for 7 days.
Thereafter, Tregs and conventional T cells (red) were sorted from peripheral blood of healthy donors,
based on the expression of CD3, CD4, IL2Rα, and CD127 T cell markers, and added to GC spheroids.
After 48 h of co-culture, spheroids were dissociated for further characterization of both T cells and
GC cells. (b–e) Monitorization of GC spheroids-T cell interactions during the 48 h of co-culture by
time-lapse microscopy. Control represents GC spheroids (green) that were not cultured with T cells
(red). 1:1, 1:5 and 1:15 (GC cell:T cell) represent the increasing proportions of T cells to GC cells tested
for (b) intestinal-type spheroids co-cultured with Tregs, (c) diffuse-type spheroids co-cultured with
Tregs, (d) intestinal-type spheroids co-cultured with conventional T cells, (e) diffuse-type spheroids
co-cultured with conventional T cells. (f,g) Light-sheet microscopy of 24 h co-cultures of intestinal-
type GC spheroids (green) and Tregs (red). (f) Co-culture 3D visualization after four-angle fusion
of light-sheet microscopy images. (j–l) Lateral views of the 3D representation obtained from the
light-sheet imaging data corresponding to the regions indicated in (g) ~124 nm, (h) ~290 nm, and
(i) ~434 nm, to the entire co-culture. Scale bar: 50 µm.

2.3. Tregs Induce IL2Rα Expression at the Membrane of Intestinal-Type GC Cells

Next, we investigated whether GC cells could affect the phenotype of T cells and
vice-versa. We started by analyzing the expression of CD3, CD4, IL2Rα, and FoxP3 T cell
markers in cells collected from the co-culture conditioned media, and after dissociation
of GC spheroids into single-cell suspensions. To assess the expression of these markers
both in T cells (Tregs and conventional, stained with CTV) and in GC cells, we followed the
gating strategy showed on Supplementary Figure S4. Both Tregs and conventional T cells
maintained their original phenotype after 48 h of co-culture (Figure 4a), indicating that GC
cells unlikely impact the expression of markers of Treg activation and immunosuppression,
such as IL2Rα and FoxP3. Surprisingly, when co-culturing intestinal-type GC cells with
Tregs, but not with conventional T cells, GC cells show de novo expression of membranous
IL2Rα (Figure 4b,c), the α-chain of the IL2 receptor. This phenomenon was specific for
intestinal-type GC cells, and the extent of expression was proportional to the number of
Tregs in the co-culture (Figure 4b–e). When intestinal-type GC spheroids were cultured in
media supplemented with IL2 and increasing concentrations of anti-CD3/anti-CD28 beads,
no IL2Rα induction was observed (Supplementary Figure S5A). Moreover, conditioned
media from co-cultures did not elicit IL2Rα expression in tumor cells from spheroids that
have not been previously exposed to T cells (Supplementary Figure S5B,C).
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of CD3, CD4, IL2Rα, and FoxP3 T cells markers by flow cytometry show that Tregs and conventional T cells maintain
their characteristic phenotype after 48 h of co-culture. (b–e) Quantitative expression of IL2Rα in GC cells. (b,d) Plots
showing percentage of IL2Rα positive intestinal- (b) or diffuse-type GC (d) cells after 48 h co-culture with Tregs (black)
or conventional T cells (grey). Data are shown as mean ± SD for co-cultures treated with T cells isolated from at least six
healthy donors. ** p < 0.01, **** p < 0.0001. Two-way ANOVA with Dunnett’s multiple comparisons test. (c,e) Representative
histograms of IL2Rα expression in intestinal- (c) or diffuse-type GC (e) cells after co-cultured at 1:1 (red) or 1:5 (blue)
proportions with T cells. (f,g) Detection of membranous IL2Rα expression by imaging flow cytometry. (f) Representative
images of IL2Rα expression in IL2Rα positive (top left) and negative (top right) intestinal GC cells, as well as in Tregs
(bottom left) and conventional T cells (bottom right). Scale bar: 10 µm. (g) Representative histogram of IL2Rα expression at
the cell membrane (left graph) of intestinal-type GC cells co-cultured with conventional T cells (1-dark line) or Tregs (2-pink
line) at 1:5 proportion and after 48 h of co-culture. Quantification of the median IL2Rα intensity at the cell membrane (right
graph). Graphs represent data from at least three independent experiments.
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We further confirmed by imaging flow cytometry, that after co-culture with Tregs,
intestinal-type GC cells displayed a 1.8-fold increase of the median membranous IL2Rα
fluorescence intensity (3312 ± 72 a.u.), in comparison to GC cells cultured with conventional
T cells (1839 ± 71 a.u.; Figure 4f,g).

Altogether, these results suggest that while GC cells do not seem to affect the phe-
notype of Tregs, their direct interaction induces expression of IL2Rα at the membrane of
intestinal-type GC cells.

2.4. IL2Rα Expression in Intestinal-Type GC Cells Associates with MAPK Signalling Pathway
Activation and Spheroid Growth

IL2 is a key cytokine in the regulation of immune cell activation and proliferation,
particularly in Tregs and effector T cells. In immune cells, the high-affinity IL2 receptor,
comprising the α-chain (CD25), β-chain (CD122) and γc-chain (CD132), initiates signal
transduction via JAK1/3, leading to the activation of MAPK, PI-3K and STAT signaling
pathways [23,24]. We tested whether these pathways were activated in intestinal-type
GC cells expressing IL2Rα, since, to the best of our knowledge IL2Rα expression has
never been described in epithelial tumor cells. We observed that sorted IL2Rα+ intestinal-
type GC cells overexpressed total and phospho-ERK1/2 (Figure 5a,b; Supplementary
Figure S6A), but STAT3 and Akt expression/activation were not detected (Supplementary
Figure S6B). Accordingly, we observed that intestinal-type GC spheroids co-cultured
with Tregs had increased growth, as a consequence of higher proliferation (p = 0.0021;
Figure 5c,d; Supplementary Figure S6C). Indeed, during the first 24 h of co-culture, GC:Treg
spheroid growth rate particularly increased in the 1:5 condition in comparison to control
spheroids, and to GC:conventional T cell co-cultures (Figure 5c). This observation indicates
an early proliferative effect of Tregs over intestinal-type GC cells. In contrast, Tregs, but
not conventional T cells, induced a reduction of diffuse-type GC spheroid growth after
24 h of co-culture as compared to control spheroids (p < 0.05; Supplementary Figure S6D).
The latter observations suggest that Tregs may have the opposite effect over diffuse-type
GC spheroids, and likely through a distinct mechanism. Altogether, these results show
that Tregs potentiate activation of the MAPK signaling pathway and intestinal-type GC
spheroid growth.
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Figure 5. Spheroid growth after co-culture with T cells. (a,b) Western blot analysis for phosphorylated
(p-ERK1/2) and total ERK1/2 protein levels in intestinal-type IL2Rα positive and negative cells after
48 h co-culture with Tregs (1:5 proportion). (a) WB scans and (b) normalized expression represent
three independent experiments. (c) Plots of growth area for intestinal GC spheroids co-cultured
with Tregs (left graph) or conventional T cells (right graph) for 48 h. Control spheroids (dark)
represent intestinal-type GC spheroids without T cells in co-culture. Co-cultures at 1:1, 1:5, and 1:15
proportions are represented in red, blue, and orange, respectively. Data shown mean ± SD of three
independent co-cultures. * p < 0.05, ** p < 0.01, *** p < 0.001. Two-way ANOVA with Dunnett’s
multiple comparisons test. (d) Representative images of Ki-67 nuclear expression (dark brown nuclei)
in intestinal-type GC spheroids after 48 h of co-culture with Tregs or conventional T cells, at different
1:0 (control), 1:1, 1:5, or 1:15 proportions.

2.5. Early-Stage Intestinal-Type GCs Are Enriched in Tregs

Considering that Treg interaction with intestinal-type GC spheroids potentiates their
growth, we hypothesized that the population of Tregs present at the tumor nest of intestinal-
type GC could also trigger tumor growth. We addressed this hypothesis by analyzing
whether the number of Tregs in GCs was associated with tumor growth into the stomach
wall (T stage). We detected higher density of Tregs in earlier T stages of intestinal-type
GC, namely comparing tumors limited to the submucosa and muscularis propria with
those growing throughout the stomach wall and into nearby organs or structures (pT2
vs. pT4, p = 0.0092, Figure 6a; tumor nest: pT2 vs. pT3, p = 0.0263 and pT2 vs. pT4,
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p = 0.0119, Figure 6b; stroma: pT1 vs. pT4, p = 0.0493, and pT2 vs. pT4, p = 0.0305,
Figure 6c). Additionally, a higher density of Tregs was also associated with the absence
of vascular (p = 0.0049; Figure 6d) and perineural invasion (p = 0.0263, Figure 6e). Im-
portantly, none of these associations were found when analyzing helper or cytotoxic T
cells (Supplementary Figure S7A–C). Further, no association of T cell density was found
with the presence/number of lymph nodes metastases (N), the presence of distant metas-
tases (M), or with the TNM stage (Supplementary Figure S7D–F).
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Figure 6. Distribution of Tregs in intestinal-type GCs and association with clinicopathological features. (a–c) Density of
Tregs at tumor nest and stroma areas (a), tumor nest only (b), or stroma only (c), according to T stage: T1, n = 2; T2, n = 5; T3,
n = 19; T4, n = 15. (d) Density of Tregs in intestinal-type GC with absence (n = 8) or presence (n = 33) of vascular invasion.
(e) Density of Tregs in intestinal-type GC with absence (n = 16) or presence (n = 25) of perineural invasion. (f) Summary of
the association of Treg density with clinicopathological features of intestinal-type GC. Box and whiskers represent median ±
10–90 percentile. * p < 0.05, ** p < 0.01; Kruskal–Wallis test with Dunn’s multiple comparison test (a–c) and Mann–Whitney
U test (d–f).

These data suggest that the crosstalk between Tregs and intestinal-type GC cells might
be important at the early stages of tumor progression when the tumor is growing through
the stomach wall into the muscularis propria, and when no vascular or perineural invasion
is observed (Figure 6f).

3. Discussion

In this study, we combined single-cell immunophenotyping of GC samples, clinico-
pathological data, and 3D in vitro co-culture cell models to propose a tumor-promoting,
non-immunosuppressive role of Tregs in GC progression (Figure 7). According to our
findings, intestinal-type GCs are enriched in Tregs that preferentially accumulate during
the initial steps of tumor progression. Additionally, our in vitro results suggest that Tregs
may promote proliferation of intestinal-type GC cells by inducing membranous expres-
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sion of IL2Rα in tumor cells, which associated with MAPK pathway activation and cell
proliferation. Together, these results led us to hypothesize that Tregs that successfully
infiltrate the tumor nest of intestinal-type GCs may directly contribute to their well-known
proliferative behavior.
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Figure 7. Schematic model of Treg prevalence in intestinal-type GC. Early-stage intestinal GC, that do not present vascular
and perineural invasion, display higher density of Tregs. In vitro results indicate that Tregs might induce IL2Rα expression
at the membrane of tumor cells, which might associate with activation of MAPK signaling pathway, increased proliferation,
and spheroid growth. Further studies are required to understand the mechanism behind IL2Rα expression in tumor cells
and its implications in future IO therapies.

Despite growing evidence of Treg enrichment in GC microenvironment, the role of
Tregs in GC remains poorly understood. Studies showing that Tregs are already increased
in non-neoplastic lesions, such as gastritis and peptic ulcers [25,26], suggest that Treg accu-
mulation may be a consequence of inflammation and occurs before GC initiation. These
findings have initially fostered our hypothesis that Tregs might differently contribute to the
neoplastic development of tumors arising in distinct inflammatory contexts. To investigate
this and considering recent data on the importance of studying the immunophenotype of
GC [27,28], we performed a single-cell spatial analysis of the immune landscape of gastric
tumors with distinct histology. Our results showed that among the T cell populations
analyzed, Tregs were enriched in intestinal-type and indeterminate-type GC, which are
often associated to chronic inflammation, in comparison to diffuse-type GC. This associa-
tion of Tregs with inflammatory environments supports the proposed mechanisms of Treg
accumulation in GC tumors based on CCL17/CCL22-mediated recruitment of Tregs or
TGF-β-mediated conversion of conventional T cells into Tregs [29–31]. Another similarity
between intestinal-type and indeterminate-type GCs was the increased proportion of MSI
cases, which could elicit stronger anti-tumor immune responses [32]. Indeterminate-type
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MSS GCs showed elevated, though highly variable, T cell numbers that likely recapitulate
the heterogenous nature of these tumors. Interestingly, in intestinal-type GCs, we observed
an unbalanced ratio of Tregs and cytotoxic T cells, comparing MSS and MSI tumors. Such
findings were more evident at the tumor nest of MSS tumors, where the number of Tregs
was higher than the number of cytotoxic T cells. This excess of Tregs at the tumor nest
fostered the hypothesis of a direct crosstalk between Tregs and intestinal-type tumor cells.
Hence, we established direct co-cultures of T cells and 3D GC spheroids recapitulating the
histological properties of intestinal- and diffuse-type GC [33]. This valuable tool allowed
us to assess specific and active spheroid infiltration by T cells. As tumors can remodel their
microenvironment, modulating Tregs’ phenotype or even converting conventional T cells
into Tregs [7], we prepared co-cultures with T cells isolated from healthy donors, presum-
ably without prior contact with tumor cells. We demonstrated that only a small fraction of
Tregs infiltrates GC spheroids, even if high numbers of Tregs are added to the culture. Our
3D co-culture system not only closely mimics tumors from GC patients, but also their mi-
croenvironment context: (1) Treg density is higher outside than inside GC spheroids, which
resembles the high T cell density at the GC stroma comparing to tumor nest; (2) Tregs, but
not conventional T cells, infiltrate GC spheroids, recapitulating the increased Treg numbers
observed in the tumor nest; (3) Tregs preferentially infiltrate intestinal-type GC spheroids,
mimicking the histological differences observed between intestinal- and diffuse-type GC.
Noteworthy is also the fact that intestinal-type GC spheroids display stronger homotypic
cell-to-cell adhesion than diffuse spheroids [33], which would hamper Treg infiltration.
Nevertheless, we also recognize the limitations to this approach. In this study, Tregs, but
not conventional T cells, were stimulated with anti-CD3/anti-CD28 beads to maintain
cell activation. A missing control of activated conventional CD4+ T cells is a significant
limitation of this study as it would have allowed us to directly assess whether the observed
effect is Treg-specific or driven by the stimulation of cells. Further studies should include
additional and more relevant biological controls. Moreover, our co-culture system repre-
sents a simplistic representation of the in vivo scenario that should be further integrated
with patient-derived xenografts or relevant in vivo models.

Our study suggests that the interaction between Tregs and tumor cells may have func-
tional consequences, as intestinal-type cells acquire IL2Rα expression at the cell membrane,
have stimulation of MAPK signaling pathway and increased spheroid growth. To our
knowledge, this is the first study reporting IL2Rα de novo expression in epithelial tumor
cells, which may hold important implications for the design of novel therapeutic strategies.
Thus, it is critical to further understand the mechanisms that lead to IL2Rα expression in
tumor cells and its molecular consequences. Our data suggests that IL2Rα is not passively
transferred from Tregs to tumor cells, as tumor cells do not acquire other membrane Treg
markers nor the cell tracer that was used to stain Tregs. Moreover, the conditioned medium
of the Treg-intestinal tumor cell co-cultures was not sufficient to induce IL2Rα expression
in other intestinal-type GC cells. Thus, it is unlikely that Treg-derived soluble factors or
extracellular vesicles could actively foster or transfer IL2Rα to tumor cells. We expect that
further studies focused on direct cell-cell interactions between Tregs and tumor cells, will
enlighten the mechanisms underlying IL2Rα expression in tumor cells. Furthermore, it
will be important to understand whether IL2Rα expression in tumor cells may also be
induced by other activated T cell populations, as in this study conventional T cells were
not activated.

In immune cells, IL2Rα is known to bind IL2 and form heterodimers with the β-
(CD122) and γc- (CD132) chains of the IL2 receptor, to activate downstream signaling
transduction [23,24]. Hence, it would be important to address whether IL2Rα-tumor cells
additionally express CD122 and CD132, and are responsive to IL2 signals. These experi-
ments are crucial to determine the molecular effects of Tregs in tumor cells that should be
further validated in tissue samples. Although the results presented in this study suggest a
novel and unexpected interaction between Tregs and tumor cells, the associated experimen-
tal limitations stress the need for further investigations to confirm the proposed hypothesis.
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Such experiments would require (1) the inactivation of IL2Rα and its downstream targets
in tumor cells upon co-culture with Tregs; (2) a larger approach such as RNA sequencing
or proteomics analysis on IL2Rα+ tumor cells to fully disclose the signaling pathways
activated by IL2Rα expression; and (3) a quantitative demonstration that spheroid growth
was due to enhanced tumor cell proliferation. This thorough analysis would provide key
molecular targets that could be further validated in patient-derived samples.

A deeper understanding on why, and under which circumstances, Tregs may in-
duce expression of IL2Rα in tumor cells, may greatly impact the therapeutic strategies
for intestinal-type GC patients and others presenting tumors with similar behavior. This
knowledge may also shed light on the contrasting effects of IL2-based tumor therapies [34].
Our results suggest that, under specific tumor contexts, therapies based on IL2 adminis-
tration may favor tumor growth instead of just promoting immune T cell proliferation
and survival. Additionally, tumor cells expressing IL2Rα at the membrane may compete
with effector T cells for IL2, a tumor immune evasion strategy that, until now, was solely
attributed to Tregs [7]. Finally, innovative tumor therapies may arise directly from knowing
that the initial steps of tumor growth may be dependent/potentiated by IL2Rα-mediated
signaling. Strategies targeting IL2Rα [35] can be specifically directed to epithelial cells,
which may reduce the secondary effects from unspecific targeting of Tregs.

4. Materials and Methods
4.1. Patient Data

Tissue samples were obtained retrospectively from 82 GC patients who underwent
gastric surgery with curative intent at Centro Hospitalar Universitário São João (CHUSJ;
Porto, Portugal). Clinicopathological features were collected from medical and patho-
logical records for further analysis (Supplementary Table S1). Formalin-fixed paraffin-
embedded (FFPE) specimens from 41 intestinal-type, 15 diffuse-type, 11 mixed-type, and
15 indeterminate-type GC tumors, according to Laurén histological classification, were
included. For each case, the H&E-stained section used for histological classification was se-
quential to the one used for immunophenotyping analysis, to allow the association between
the T cell immune profiling and tissue histological features. All cases were staged according
to the eighth edition of the American Joint Committee on Cancer (AJCC) staging system.
None of the patients included in this study was treated with neoadjuvant chemotherapy
nor chemo-radiation therapy. The study was approved by the CHUSJ Ethics Committee
(protocol 78/13).

4.2. Immunofluorescence Staining, Image Acquisition, and Analysis

T cell immunophenotyping of GC samples was performed using a seven-target im-
munofluorescence detection protocol on single FFPE tissue sections, following a previously
described combination of tyramide signal amplification (TSA) with direct and indirect
immunostaining [36]. Briefly, after an initial deparaffinisation of 4-µm tissue sections with
xylene and washing with ethanol, endogenous peroxidase was inactivated by blocking
with 0.3% hydrogen peroxide in methanol (20 min; Merck Millipore, Burlington, MA, USA)
and heat-induced antigen retrieval was performed with Tris-EDTA buffer (10 mM/1 mM,
pH 9.0, 10 min). After cooling, slides were incubated with Superblock solution (30 min;
Thermo Fisher Scientific, Waltham, MA, USA) to block non-specific binding. For TSA, slides
were incubated with anti-PD-1 antibody (D4W2J, 1:2000 dilution, 60 min; Cell Signalling
Technology, Danvers, MA, USA), followed by incubation with poly-horseradish peroxidase
solution (30 min; Immunologic, Duiven, The Netherlands) and with Opal 520 reagent
(1:100 dilution, 60 min; Perkin Elmer, Waltham, MA, USA). Before proceeding to the indi-
rect immunofluorescence step, microwave-induced antibody stripping was achieved by
incubating slides in citrate buffer (10 mM, pH 6.0) at 90 W for 15 min. For the two-step
immunofluorescence detection, slides were incubated with anti-FoxP3 (236A/E7, 1:25 dilu-
tion; Thermo Fisher Scientific), anti-CD8 (4B11, 1:50 dilution; Dako, Glostrup, Denmark)
and anti-CD103 (EPR4166 2, 1:100 dilution; Abcam, Cambridge, UK) primary antibodies
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overnight, and with corresponding conjugated secondary antibodies (CF and Alexa Fluor
dyes; Sigma–Aldrich, Saint Louis, MO, USA, and Thermo Fisher Scientific, respectively) for
60 min. Direct conjugated antibodies anti-CD3-AF594 (EP447E; Abcam) and anti-keratin-
AF546 (AE1/AE3 and C11; Thermo Fisher Scientific and Cell Signalling Technology) were
incubated for 5 h, after which slides were incubated with DAPI (1 µM) for nuclear staining
and mounted using Prolong™ gold antifade reagent (Cell Signalling Technology). Further
details on the antibodies used can be found in Supplementary Table S2.

A complete scan of the slides was obtained using Vectra 3.0 Automated Quanti-
tative Pathology Imaging System (4× magnification; Perkin Elmer) after which three
regions of interest at the tumor core and another three at the invasive front were scanned
with 20× magnification (1340 × 1000 µm images). Single-marker immunostainings were
used to create the spectral libraries at the InForm Cell Analysis software (Perkin Elmer;
Supplementary Figure S8A). DAPI/keratin staining was used to segment images into
tumor nest and stroma (Supplementary Figure S8B). For cell segmentation, DAPI staining
was used to segment nuclei, while CD3/CD8 staining was used to detect cell membrane
(Supplementary Figure S8C). The resulting cells were analyzed based on the following phe-
notypes (Supplementary Figure S8D): (1) T helper cells, which were CD3+CD8-FoxP3- cells;
(2) CD8 T cells, CD3+CD8+; (3) and Treg cells that were CD3+FoxP3+ but CD8-. We have
also analyzed the expression of CD103 (resident T cells) and PD-1 (activated cells) within
these phenotypes (Supplementary Figure S8E). This data was not included in the main
manuscript; however, it is available in Supplementary File S1. Cells expressing cytokeratin
were excluded when building T cell profiles. For each of the previous steps (i.e., tissue
segmentation, cell segmentation, and immunophenotyping), the InForm Cell Analysis
software was manually trained before automated classification. Cell density (cells/mm2)
was calculated by normalizing the cell counts by the tissue area of a given image.

4.3. Gastric Cancer 3D Cell Culture

Human GC cell lines MKN74 and MKN45 (intestinal- and diffuse-type GC, respectively;
Japanese Collection of Research Bioresources Cell Bank) were seeded on 3D CoSeedis matri-
ces (1 × 105 cells/mL; abc biopply, Solothurn, Switzerland), as previously described [33],
and cultured in RPMI 1640 medium (Thermo Fisher Scientific) supplemented with 10%
fetal bovine serum (FBS; Biowest, Nuaillé, France) and 1% penicillin-streptomycin (PS;
Thermo Fisher Scientific), at 37 ◦C in 5% CO2 humidified atmosphere, for 7 days to allow
spheroid formation before co-culture with T cells.

4.4. Preparation of Treg and Conventional T Cell Enriched Samples

Human T cells were freshly isolated from anonymized healthy donor buffy coats,
provided by Instituto Português do Sangue e da Transplantação (Porto, Portugal). The
isolation of immune cells from healthy blood donors was approved by the CHUSJ Ethics
Committee (protocol 90/19) after each donor informed consent collection. Blood samples
were diluted (1:3) in 2% FBS/PBS, layered on top of Histopaque®-1077 (Sigma-Aldrich,
St. Louis, MO, USA), on SepMateTM tubes (Stemcell Technologies, Vancouver, BC, Canada),
and centrifuged at 1200× g (10 min, with the brake on). Resulting peripheral blood
mononuclear cells (PBMCs) were enriched for CD4+ T cells using MojoSortTM Human
CD4 T Cell Isolation Kit (BioLegend, San Diego, CA, USA). According to the manufacturer
instructions, PBMCs were filtered through a 70-µm cell strainer and incubated with CD4
magnetic Nanobeads (20 min, on ice). CD4+ T cells were separated and washed in 2%
FBS/PBS using a DynaMag™-15 magnet (Thermo Fisher Scientific). Thereafter, CD4+ T
cells were incubated with fluorescent conjugated antibodies anti-CD3-PE (OKT3, 1:400
dilution; Thermo Fisher Scientific), anti-CD4-FITC (OKT4, 1:400 dilution; Thermo Fisher Sci-
entific), anti- IL2Rα-PE/Cy7 (BC96, 1:25 dilution; Thermo Fisher Scientific) and anti-CD127
APC/Cy7 (eBioRDR5, 1:50 dilution; Thermo Fisher Scientific) for 30 min. Fluorescence-
activated cell sorting (FACS) of Tregs (CD3+CD4+CD127−IL2Rα+) and conventional T
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cells (CD3+CD4+CD127+IL2Rα−) was performed on FACSAriaII flow cytometer (BD Bio-
sciences). Further details on the antibodies used can be found in Supplementary Table S2.

4.5. Co-Culture of GC Spheroids and T Cells

For the co-culture of GC spheroids and T cells, MKN74 (intestinal-type) and MKN45
(diffuse-type) GC spheroids were transferred to round-bottom 96-well plates, and
Tregs/conventional T cells were added to the culture media at 1:1, 1:5, and 1:15 (GC cell:T cell)
ratios. Co-cultures were maintained in RPMI 1640 with 25 mM HEPES (Lonza, Basel,
Switzerland) supplemented with 10% FBS, 1% PS, 1% Sodium pyruvate (Sigma-Aldrich)
and recombinant human IL-2 (10 ng/mL; PeproTech, London, UK). Treg cultures were
further supplemented with anti-CD3/anti-CD28 MACSiBead (0.5 beads/T cell; T Cell Acti-
vation Kit, Miltenyi Biotec, Bergisch Gladbach, Germany). As a control, MKN74/MKN45
single cultures (1:0; GC cell:T cell) were maintained in the same conditions as co-cultures.
For all co-culture experiments (Figures 3–5), a minimal number of 6 independent T cells
donors, collected and analyzed in at least 3 independent days are represented.

4.6. Live Cell Imaging

To monitor T cell infiltration into tumor spheroids, MKN74 and MKN45 cell lines
stably expressing mEmerald were used to form the GC spheroids, and sorted Tregs and
conventional T cells were stained with CellTrace™ Far Red (CTFR) Cell Proliferation
Kit (20 min, 37 ◦C; Thermo Fisher Scientific) before co-culture. First, co-cultures were
imaged using an automated fluorescence widefield HCS microscope (IN Cell Analyzer
2000; GE Healthcare, Chicago, IL, USA), equipped with a Plan-Fluor Nikon 20×/0.45
objective lens and a large-chip CCD camera (CoolSNAP K4). Emerald-GC spheroids were
acquired in the FITC channel (Excitation/Emission: 490/ 525 nm; Exposure: 50 ms) and
T cells in the Cy5 channel (Excitation/Emission: 645/705 nm; Exposure: 30 ms). Images
were acquired at every 2 h for 60 h, under temperature-controlled conditions.

To further confirm Treg (CTFR) infiltration into intestinal-type GC spheroids (MKN74-
Emerald), spheroids were transferred to a fluorinated ethylene propylene (FEP) microtube
and imaged with a custom-built Digital Scanner Laser Light Sheet microscope (LSFM)
equipped with a Nikon Plan-Fluor 10x/0.3 water-immersion objective lens in illumination
and detection plans. The fluorescence signals of the Emerald-MKN74 spheroids and CTFR-
Tregs were recorded using a Hamamatsu Orca-Flash 4.0 V3 camera, after sample excitation
with a 488 (1.0 mW) and 640 nm (1.0 mW) laser lines, respectively, with a 525/50 nm
bandpass (BP) emission filter for emerald-spheroids and a 700/75 nm BP emission filter
for CTFR-Tregs. The co-culture was imaged at three timepoints (16 h, 24 h, and 48 h)
from four angles (90◦ rotation) every 16 min. Each view consists of multiple slices 1 µm
apart covering the entire spheroid. Image reconstruction was performed using the arivis
Vision4D v3.1.4 (arivis AG, Rostock, Germany).

4.7. Immunophenotype by Conventional and Imaging Flow Cytometry Analysis

After 48 h of co-culture, conditioned media and spheroids were collected to analyze
the phenotype of Tregs and conventional T cells. Before co-culture with GC spheroids, Tregs
and conventional T cells were stained using CellTrace™ Violet (CTV) Cell Proliferation Kit
(20 min, 37 ◦C; Thermo Fisher Scientific), to allow further evaluation of T cell proliferation
and to separate T cells (CTV+) from GC cells (CTV-) in the flow cytometry analysis. To
prepare single-cell suspensions, spheroids were dissociated using 0.5% Trypsin-EDTA
(5 min, 37 ◦C; Thermo Fisher Scientific). Both T cells and GC cells were stained with
anti-CD3-PE, anti-CD4-FITC, and anti-IL2Rα-PE/Cy7, as previously mentioned, and with
Fixable Viability Dye eFluor™780 (1:1000 dilution; Thermo Fisher Scientific) to assess cell
viability. Intracellular staining of FoxP3 was performed using the Foxp3/Transcription
Factor Staining Buffer Set (Thermo Fisher Scientific), following manufacturer’s instructions.
Briefly, cells were fixed with Fixation/Permeabilization Buffer (30 min; Thermo Fisher
Scientific), blocked with human IgG (1 mg/mL, 15 min; Sigma-Aldrich) and stained with
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anti-FoxP3-APC (1:15, 30 min; Thermo Fisher Scientific). Data acquisition was performed
on an LSRFortessa cytometer (Becton, Dickinson & Company, Franklin Lakes, NJ, USA)
and analyzed using FlowJo v10 software (Becton, Dickinson & Company) following the
gating strategy explained on Supplementary Figure S3A.

Imaging flow cytometry was performed on single-cell suspensions derived from
co-cultures of MKN74-GC spheroids with Tregs/conventional T cells and stained with anti-
IL2Rα-PE/Cy7 antibody. Data was acquired on an imaging flow cytometer (ImageStreamX;
Amnis Corporation, Seattle, WA, USA) equipped with INSPIRE software. Samples were
excited with a 488 nm argon laser, and for each event, bright-field cell images were ac-
quired (40× magnification) on channel 1, while IL2Rα signal was detected on channel 6
(Excitation/Emission: 496/774 nm). Laser power was not modified throughout the sample
acquisition. Data analysis was performed using the IDEAS software (Amnis Corporation).
Further details on the antibodies used can be found in Supplementary Table S2.

4.8. Recovery of IL2Rα+ GC Cells and Western Blot Analysis

To analyze the effect of IL2Rα expression specifically on intestinal-type GC cells,
MKN74-GC cells were stained with CellTrace™ Yellow (CTY) Cell Proliferation Kit (Thermo
Fisher Scientific) before grown as spheroids, while Tregs and conventional T cells were
stained with CellTrace™ Far Red (CTFR) Cell Proliferation Kit (Thermo Fisher Scientific)
before co-culture. As previously, after co-culture, spheroids were dissociated, and the re-
sulting single-cell suspension was stained with anti-IL2Rα-PE/Cy7 antibody. MKN74-GC
cells (CTY+) positive or negative for IL2Rα were sorted on the FACSAria II flow cytome-
ter (Becton, Dickinson & Company) and collected to FBS. According to the number of
sorted cells, samples were resuspended in proportional volumes of radioimmunoprecipita-
tion assay buffer (RIPA buffer) supplemented with protease and phosphatase inhibitors
(Thermo Fisher Scientific) and cell lysis was allowed for 30 min, on ice. To enhance protein
recovery, lysates were sonicated twice (10 s, 20×, 50%) before centrifugation at 14,000 rpm
(15 min, 4 ◦C) to recover cleared lysates. Equal amounts of protein lysate (25 µL) from
each biological replicate were subjected to Western blotting. Primary antibodies targeting
phospho-Stat3 (Tyr705, D3A7; Cell Signalling Technology), Stat3 (124 h6; Cell Signalling
Technology), phospho-Akt (Ser473, D9E; Cell Signalling Technology), Akt (Cell Signalling
Technology), phospho-p44/42 MAPK (phospho-ERK1/2, Thr202/Tyr204; Cell Signalling
Technology), p44/42 MAPK (ERK1/2; Cell Signalling Technology), and GAPDH (1E6D9;
ProteinTech, Rosemont, IL, USA) were used, as well as corresponding ECLTM anti-mouse
and anti-rabbit IgG horseradish peroxidase-conjugated secondary antibodies (GE Health-
care). Detected signals were quantified using Quantity One® Basic software (Bio-Rad,
Hercules, CA, USA). Unprocessed scans of Western blots are provided in Supplementary
Figure S9. Additional information on the antibodies used is detailed in Supplementary
Table S2.

4.9. Ki-67 Staining on GC-Spheroids

To investigate GC-spheroid proliferation after co-culture, spheroids were fixed with
2% paraformaldehyde (overnight; Merck, Darmstadt, Germany), stained with Gill’s hema-
toxylin (10 min; Bio-Optica, Milan, Italy) and injected within a drop of 2.4% low melting
point agarose (50 ◦C; Lonza). After gelling (10 min at room temperature followed by
20 min on ice), the agarose structures were included in paraffin blocks and then sectioned
into 3-µm slides. Antigen retrieval was performed using citrate buffer (10 mM, pH 6.0, at
98 ◦C, 40 min; Abcam). Endogenous peroxidase activity was blocked using 0.3% hydrogen
peroxidase solution (20 min; Sigma-Aldrich) followed by incubation with anti-Ki-67 anti-
body (SP6, 1:200 dilution, 90 min; Thermo Fisher Scientific). After washing, slides were
incubated with REAL EnVision Detection System (Dako) substrate buffer (30 min) and
with DAB Chromogen (10 min).
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5. Conclusions

Overall, our study suggests that during the early steps of intestinal-type gastric
carcinogenesis, Tregs accumulate within the tumor microenvironment and, likely through
a contact-dependent mechanism, promote IL2Rα expression and stimulation of growth
signaling pathways, such as MAPK pathway, in tumor cells. Our findings hold promising
and relevant implications for future IO therapies and patient stratification in GC, which
may potentially be expanded to other immune cold tumors.
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