205 research outputs found

    Design of artificial neural oscillatory circuits for the control of lamprey- and salamander-like locomotion using evolutionary algorithms

    Get PDF
    This dissertation investigates the evolutionary design of oscillatory artificial neural networks for the control of animal-like locomotion. It is inspired by the neural organÂŹ isation of locomotor circuitries in vertebrates, and explores in particular the control of undulatory swimming and walking. The difficulty with designing such controllers is to find mechanisms which can transform commands concerning the direction and the speed of motion into the multiple rhythmic signals sent to the multiple actuators typically involved in animal-like locomotion. In vertebrates, such control mechanisms are provided by central pattern generators which are neural circuits capable of proÂŹ ducing the patterns of oscillations necessary for locomotion without oscillatory input from higher control centres or from sensory feedback. This thesis explores the space of possible neural configurations for the control of undulatory locomotion, and addresses the problem of how biologically plausible neural controllers can be automatically generated.Evolutionary algorithms are used to design connectionist models of central pattern generators for the motion of simulated lampreys and salamanders. This work is inspired by Ekeberg's neuronal and mechanical simulation of the lamprey [Ekeberg 93]. The first part of the thesis consists of developing alternative neural controllers for a similar mechanical simulation. Using a genetic algorithm and an incremental approach, a variety of controllers other than the biological configuration are successfully developed which can control swimming with at least the same efficiency. The same method is then used to generate synaptic weights for a controller which has the observed biological connectivity in order to illustrate how the genetic algorithm could be used for developing neurobiological models. Biologically plausible controllers are evolved which better fit physiological observations than Ekeberg's hand-crafted model. Finally, in collaboration with Jerome Kodjabachian, swimming controllers are designed using a developmental encoding scheme, in which developmental programs are evolved which determine how neurons divide and get connected to each other on a two-dimensional substrate.The second part of this dissertation examines the control of salamander-like swimming and trotting. Salamanders swim like lampreys but, on the ground, they switch to a trotting gait in which the trunk performs a standing wave with the nodes at the girdles. Little is known about the locomotion circuitry of the salamander, but neurobiologists have hypothesised that it is based on a lamprey-like organisation. A mechanical simÂŹ ulation of a salamander-like animat is developed, and neural controllers capable of exhibiting the two types of gaits are evolved. The controllers are made of two neural oscillators projecting to the limb motoneurons and to lamprey-like trunk circuitry. By modulating the tonic input applied to the networks, the type of gait, the speed and the direction of motion can be varied.By developing neural controllers for lamprey- and salamander-like locomotion, this thesis provides insights into the biological control of undulatory swimming and walking, and shows how evolutionary algorithms can be used for developing neurobiological models and for generating neural controllers for locomotion. Such a method could potentially be used for designing controllers for swimming or walking robots, for instance

    Online trajectory generation in an amphibious snake robot using a lamprey-like central pattern generator model

    Get PDF
    This article presents a control architecture for controlling the locomotion of an amphibious snake/lamprey robot capable of swimming and serpentine locomotion. The control architecture is based on a central pattern generator (CPG) model inspired from the neural circuits controlling locomotion in the lamprey's spinal cord. The CPG model is implemented as a system of coupled nonlinear oscillators on board of the robot. The CPG generates coordinated travelling waves in real time while being interactively modulated by a human-operator. Interesting aspects of the CPG model include (1) that it exhibits limit cycle behavior (i.e. it produces stable rhythmic patterns that are robust against perturbations), (2) that the limit cycle behavior has a closed-form solution which provides explicit control over relevant characteristics such as frequency, amplitude and wavelength of the travelling waves, and (3) that the control parameters of the CPG can be continuously and interactively modulated by a human operator to offer high maneuverability. We demonstrate how the CPG allows one to easily adjust the speed and direction of locomotion both in water and on ground while ensuring that continuous and smooth setpoints; are sent to the robot's actuated joints

    Pattern generators with sensory feedback for the control of quadruped locomotion

    Get PDF
    Central Pattern Generators (CPGs) are becoming a popular model for the control of locomotion of legged robots. Biological CPGs are neural networks responsible for the generation of rhythmic movements, especially locomotion. In robotics, a systematic way of designing such CPGs as artificial neural networks or systems of coupled oscillators with sensory feedback inclusion is still missing. In this contribution, we present a way of designing CPGs with coupled oscillators in which we can independently control the ascending and descending phases of the oscillations (i.e. the swing and stance phases of the limbs). Using insights from dynamical system theory, we construct generic networks of oscillators able to generate several gaits under simple parameter changes. Then we introduce a systematic way of adding sensory feedback from touch sensors in the CPG such that the controller is strongly coupled with the mechanical system it controls. Finally we control three different simulated robots (iCub, Aibo and Ghostdog) using the same controller to show the effectiveness of the approach. Our simulations prove the importance of independent control of swing and stance duration. The strong mutual coupling between the CPG and the robot allows for more robust locomotion, even under non precise parameters and non-flat environmen

    Roombots -- Mechanical Design of Self-Reconfiguring Modular Robots for Adaptive Furniture

    Get PDF
    We aim at merging technologies from information technology, roomware, and robotics in order to design adaptive and intelligent furniture. This paper presents design principles for our modular robots, called Roombots, as future building blocks for furniture that moves and self-reconfigures. The reconfiguration is done using dynamic connection and disconnection of modules and rotations of the degrees of freedom. We are furthermore interested in applying Roombots towards adaptive behaviour, such as online learning of locomotion patterns. To create coordinated and efficient gait patterns, we use a Central Pattern Generator (CPG) approach, which can easily be optimized by any gradient-free optimization algorithm. To provide a hardware framework we present the mechanical design of the Roombots modules and an active connection mechanism based on physical latches. Further we discuss the application of our Roombots modules as pieces of a homogenic or heterogenic mix of building blocks for static structures

    Locomotion Gait Optimization For Modular Robots; Coevolving Morphology and Control

    Get PDF
    This study aims at providing a control-learning framework capable of generating optimal locomotion patterns for the modular robots. The key ideas are firstly to provide a generic control structure that can be well-adapted for the different morphologies and secondly to exploit and coevolve both morphology and control aspects. A generic framework combining robot morphology, control and environment and on the top of them optimization and evolutionary algorithms are presented. The details of the components and some of the preliminary results are discussed. (C) Selection and peer-review under responsibility of FET11 conference organizers and published by Elsevier B.V

    Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs

    Get PDF
    In this work we research the role of body dynamics in the complexity of kinematic patterns in a quadruped robot with compliant legs. Two gait patterns, lateral sequence walk and trot, along with leg length control patterns of different complexity were implemented in a modular, feed-forward locomotion controller. The controller was tested on a small, quadruped robot with compliant, segmented leg design, and led to self-stable and self-stabilizing robot locomotion. In-air stepping and on-ground locomotion leg kinematics were recorded, and the number and shapes of motion primitives accounting for 95% of the variance of kinematic leg data were extracted. This revealed that kinematic patterns resulting from feed-forward control had a lower complexity (in-air stepping, 2 to 3 primitives) than kinematic patterns from on-ground locomotion (4 primitives), although both experiments applied identical motor patterns. The complexity of on-ground kinematic patterns had increased, through ground contact and mechanical entrainment. The complexity of observed kinematic on-ground data matches those reported from level-ground locomotion data of legged animals. Results indicate that a very low complexity of modular, rhythmic, feed-forward motor control is sufficient for level-ground locomotion in combination with passive compliant legged hardware

    Adaptive Frequency Oscillators and Applications

    Get PDF
    In this contribution we present a generic mechanism to transform an oscillator into an adaptive frequency oscillator, which can then dynamically adapt its parameters to learn the frequency of any periodic driving signal. Adaptation is done in a dynamic way: it is part of the dynamical system and not an offline process. This mechanism goes beyond entrainment since it works for any initial frequencies and the learned frequency stays encoded in the system even if the driving signal disappears. Interestingly, this mechanism can easily be applied to a large class of oscillators from harmonic oscillators to relaxation types and strange attractors. Several practical applications of this mechanism are then presented, ranging from adaptive control of compliant robots to frequency analysis of signals and construction of limit cycles of arbitrary shape

    Dynamic hebbian learning in adaptive frequency oscillators

    Get PDF
    Nonlinear oscillators are widely used in biology, physics and engineering for modeling and control. They are interesting because of their synchronization properties when coupled to other dynamical systems. In this paper, we propose a learning rule for oscillators which adapts their frequency to the frequency of any periodic or pseudo-periodic input signal. Learning is done in a dynamic way: it is part of the dynamical system and not an offline process. An interesting property of our model is that it is easily generalizable to a large class of oscillators, from phase oscillators to relaxation oscillators and strange attractors with a generic learning rule. One major feature of our learning rule is that the oscillators constructed can adapt their frequency without any signal processing or the need to specify a time window or similar free parameters. All the processing is embedded in the dynamics of the adaptive oscillator. The convergence of the learning is proved for the Hopf oscillator, then numerical experiments are carried out to explore the learning capabilities of the system. Finally, we generalize the learning rule to non-harmonic oscillators like relaxation oscillators and strange attractors
    • 

    corecore