75 research outputs found

    Tips and turns of bacteriophytochrome photoactivation

    Get PDF
    Phytochromes are ubiquitous photosensor proteins, which control the growth, reproduction and movement in plants, fungi and bacteria. Phytochromes switch between two photophysical states depending on the light conditions. In analogy to molecular machines, light absorption induces a series of structural changes that are transduced from the bilin chromophore, through the protein, and to the output domains. Recent progress towards understanding this structural mechanism of signal transduction has been manifold. We describe this progress with a focus on bacteriophytochromes. We describe the mechanism along three structural tiers, which are the chromophore-binding pocket, the photosensory module, and the output domains. We discuss possible interconnections between the tiers and conclude by presenting future directions and open questions. We hope that this review may serve as a compendium to guide future structural and spectroscopic studies designed to understand structural signaling in phytochromes.Peer reviewe

    Structure and regulation of mammalian S-adenosylmethionine decarboxylase

    Get PDF
    In order to understand the structure and regulation of S-adenosylmethionine decarboxylase, cDNA clones encoding this enzyme have been isolated from rat prostate and human fibroblast cDNA libraries. The authenticity of the cDNAs was verified by: (a) transfecting the Chinese hamster ovary cells with the human cDNA in the pcD vector which resulted in a transient 10-20-fold increase in S-adenosylmethionine decarboxylase activity in recipient cells; and (b) translating the mRNA formed by transcription of the cDNA insert in a reticulocyte lysate and recording an increase in S-adenosylmethionine decarboxylase activity. The amino acid sequences deduced from the cDNAs indicate that the human proenzyme for this protein contains 334 amino acids and has a molecular weight of 38,331 whereas the rat proenzyme contains 333 amino acid residues. The human and rat enzymes are very similar having only 11 amino acid differences and the cDNAs are also closely related showing over 90% homology in the 1617-nucleotide overlap which was sequenced. A further indication of the highly conserved nature of mammalian S-adenosylmethionine decarboxylases is that the amino acid sequences deduced from the human and the rat cDNAs contained peptide sequences identical to those previously reported for the purified bovine enzyme. In vitro transcription/translation experiments showed that the proenzyme is converted to two polypeptides of molecular weights about 32,000 and 6,000 in a processing reaction which generates the prosthetic pyruvate group and that the final enzyme contains both polypeptides. Two forms of S-adenosylmethionine decarboxylase mRNA (2.1 and about 3.4-3.6 kilobases) are present in human and rodent tissues and may originate from the utilization of two different polyadenylation signals. Southern blots of rat genomic DNA indicated that the S-adenosylmethionine decarboxylase gene belongs to a multigene family. Depletion of cellular polyamines by inhibitors or ornithine decarboxylase or the aminopropyltransferases led to an increase in the content of S-adenosylmethionine decarboxylase protein and mRNA, but the elevation in the mRNA was not sufficient to account for all of the change in the enzyme level, particularly in cells in which spermine was depleted

    Pigment Organization and Energy Transfer Dynamics in Isolated Photosystem I (PSI) Complexes from Arabidopsis thaliana Depleted of the PSI-G, PSI-K, PSI-L, or PSI-N Subunit

    Get PDF
    AbstractGreen plant photosystem I (PSI) consists of at least 18 different protein subunits. The roles of some of these protein subunits are not well known, in particular those that do not occur in the well characterized PSI complexes from cyanobacteria. We investigated the spectroscopic properties and excited-state dynamics of isolated PSI-200 particles from wild-type and mutant Arabidopsis thaliana plants devoid of the PSI-G, PSI-K, PSI-L, or PSI-N subunit. Pigment analysis and a comparison of the 5K absorption spectra of the various particles suggests that the PSI-L and PSI-H subunits together bind approximately five chlorophyll a molecules with absorption maxima near 688 and 667nm, that the PSI-G subunit binds approximately two red-shifted β-carotene molecules, that PSI-200 particles without PSI-K lack a part of the peripheral antenna, and that the PSI-N subunit does not bind pigments. Measurements of fluorescence decay kinetics at room temperature with picosecond time resolution revealed lifetimes of ∼0.6, 5, 15, 50, 120, and 5000ps in all particles. The 5- and 15-ps phases could, at least in part, be attributed to the excitation equilibration between bulk and red chlorophyll forms, though the 15-ps phase also contains a contribution from trapping by charge separation. The 50- and 120-ps phases predominantly reflect trapping by charge separation. We suggest that contributions from the core antenna dominate the 15-ps trapping phase, that those from the peripheral antenna proteins Lhca2 and Lhca3 dominate the 50-ps phase, and that those from Lhca1 and Lhca4 dominate the 120-ps phase. In the PSI-200 particles without PSI-K or PSI-G protein, more excitations are trapped in the 15-ps phase and less in 50- and 120-ps phases, which is in agreement with the notion that these subunits are involved in the interaction between the core and peripheral antenna proteins

    On the (un)coupling of the chromophore, tongue interactions, and overall conformation in a bacterial phytochrome

    Get PDF
    Phytochromes are photoreceptors in plants, fungi, and various microorganisms and cycle between metastable red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Their light responses are thought to follow a conserved structural mechanism that is triggered by isomerization of the chromophore. Downstream structural changes involve refolding of the so-called tongue extension of the phytochrome-specific GAF-related (PHY) domain of the photoreceptor. The tongue is connected to the chromophore by conserved DIP and PRXSF motifs and a conserved tyrosine, but the role of these residues in signal transduction is not clear. Here, we examine the tongue interactions and their interplay with the chromophore by substituting the conserved tyrosine (Tyr(263)) in the phytochrome from the extremophile bacterium Deinococcus radiodurans with phenylalanine. Using optical and FTIR spectroscopy, X-ray solution scattering, and crystallography of chromophore-binding domain (CBD) and CBD-PHY fragments, we show that the absence of the Tyr(263) hydroxyl destabilizes the -sheet conformation of the tongue. This allowed the phytochrome to adopt an -helical tongue conformation regardless of the chromophore state, hence distorting the activity state of the protein. Our crystal structures further revealed that water interactions are missing in the Y263F mutant, correlating with a decrease of the photoconversion yield and underpinning the functional role of Tyr(263) in phytochrome conformational changes. We propose a model in which isomerization of the chromophore, refolding of the tongue, and globular conformational changes are represented as weakly coupled equilibria. The results also suggest that the phytochromes have several redundant signaling routes.Peer reviewe

    Comparative analysis of two paradigm bacteriophytochromes reveals opposite functionalities in two-component signaling

    Get PDF
    Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (Agp1). Whereas Agp1 acts as a conventional histidine kinase, we identify DrBphP as a light-sensitive phosphatase. While Agp1 binds its cognate response regulator only transiently, DrBphP does so strongly, which is rationalized at the structural level. Our data pinpoint two key residues affecting the balance between kinase and phosphatase activities, which immediately bears on photoreception and two-component signaling. The opposing output activities in two highly similar bacteriophytochromes suggest the use of light-controllable histidine kinases and phosphatases for optogenetics. The bacteriophytochrome DrBphP from Deinococcus radiodurans shows high sequence homology to the histidine kinase Agp1 from Agrobacterium fabrum but lacks kinase activity. Here, the authors structurally and biochemically analyse DrBphP and Agp1, showing that DrBphP is a light-activatable phosphatase.Peer reviewe

    Bioactive glass ions induce efficient osteogenic differentiation of human adipose stem cells encapsulated in gellan gum and collagen type I hydrogels

    Get PDF
    Background: Due to unmet need for bone augmentation, our aim was to promote osteogenic differentiation of human adipose stem cells (hASCs) encapsulated in gellan gum (GG) or collagen type I (COL) hydrogels with bioactive glass (experimental glass 2-06 of composition [wt-%]: Na2O 12.1, K2O 14.0, CaO 19.8, P2O5 2.5, B2O3 1.6, SiO2 50.0) extract based osteogenic medium (BaG OM) for bone construct development. GG hydrogels were crosslinked with spermidine (GG-SPD) or BaG extract (GG-BaG). Methods: Mechanical properties of cell-free GG-SPD, GG-BaG, and COL hydrogels were tested in osteogenic medium (OM) or BaG OM at 0, 14, and 21d. Hydrogel embedded hASCs were cultured in OM or BaG OM for 3, 14, and 21d, and analyzed for viability, cell number, osteogenic gene expression, osteocalcin production, and mineralization. Hydroxyapatite-stained GG-SPD samples were imaged with Optical Projection Tomography (OPT) and Selective Plane Illumination Microscopy (SPIM) in OM and BaG OM at 21d. Furthermore, Raman spectroscopy was used to study the calcium phosphate (CaP) content of hASC-secreted ECM in GG-SPD, GG-BaG, and COL at 21d in BaG OM. Results: The results showed viable rounded cells in GG whereas hASCs were elongated in COL. Importantly, BaG OM induced significantly higher cell number and higher osteogenic gene expression in COL. In both hydrogels, BaG OM induced strong mineralization confirmed as CaP by Raman spectroscopy and significantly improved mechanical properties. GG-BaG hydrogels rescued hASC mineralization in OM. OPT and SPIM showed homogeneous 3D cell distribution with strong mineralization in BaG OM. Also, strong osteocalcin production was visible in COL. Conclusions: Overall, we showed efficacious osteogenesis of hASCs in 3D hydrogels with BaG OM with potential for bone-like grafts.peerReviewe

    Origin of the 701-nm fluorescence emission of the Lhca2 subunit of higher plant photosystem I

    Get PDF
    Photosystem I of higher plants is characterized by red-shifted spectral forms deriving from chlorophyll chromophores. Each of the four Lhca1 to -4 subunits exhibits a specific fluorescence emission spectrum, peaking at 688, 701, 725, and 733 nm, respectively. Recent analysis revealed the role of chlorophyll-chlorophyll interactions of the red forms in Lhca3 and Lhca4, whereas the basis for the fluorescence emission at 701 nm in Lhca2 is not yet clear. We report a detailed characterization of the Lhca2 subunit using molecular biology, biochemistry, and spectroscopy and show that the 701-nm emission form originates from a broad absorption band at 690 nm. Spectroscopy on recombinant mutant proteins assesses that this band represents the low energy form of an excitonic interaction involving two chlorophyll a molecules bound to sites A5 and B5, the same protein domains previously identified for Lhca3 and Lhca4. The resulting emission is, however, substantially shifted to higher energies. These results are discussed on the basis of the structural information that recently became available from x-ray crystallography (Ben Shem, A., Frolow, F., and Nelson, N. (2003) Nature 426, 630-635). We suggest that, within the Lhca subfamily, spectroscopic properties of chromophores are modulated by the strength of the excitonic coupling between the chromophores A5 and B5, thus yielding fluorescence emission spanning a large wavelength interval. It is concluded that the interchromophore distance rather than the transition energy of the individual chromophores or the orientation of transition vectors represents the critical factor in determining the excitonic coupling in Lhca pigment-protein complexes

    The three-dimensional structure of Drosophila melanogaster (6-4) photolyase at room temperature

    Get PDF
    (6-4) photolyases are flavoproteins that belong to the photolyase/cryptochrome family. Their function is to repair DNA lesions using visible light. Here, crystal structures of Drosophila melanogaster (6-4) photolyase [Dm(6-4)photolyase] at room and cryogenic temperatures are reported. The room-temperature structure was solved to 2.27 angstrom resolution and was obtained by serial femtosecond crystallography (SFX) using an X-ray free-electron laser. The crystallization and preparation conditions are also reported. The cryogenic structure was solved to 1.79 angstrom resolution using conventional X-ray crystallography. The structures agree with each other, indicating that the structural information obtained from crystallography at cryogenic temperature also applies at room temperature. Furthermore, UV-Vis absorption spectroscopy confirms that Dm(6-4)photolyase is photoactive in the crystals, giving a green light to time-resolved SFX studies on the protein, which can reveal the structural mechanism of the photoactivated protein in DNA repair.Peer reviewe
    corecore