121 research outputs found

    Lattice-Induced Double-Valley Degeneracy Lifting in Magnetic Field in Graphene

    Full text link
    We show that the recently discovered double-valley splitting of the low-lying Landau level(s) in the Quantum Hall Effect in graphene can be explained as perturbative orbital interaction of intra- and inter-valley microscopic orbital currents with a magnetic field. This effect is provided by the translational-non-invariant terms corresponding to graphene's crystallographic honeycomb symmetry but do not exist in the relativistic theory of massless Dirac Fermions in Quantum Electrodynamics. We discuss recent data in view of these results

    Tunable room temperature nonlinear Hall effect from the surfaces of elementary bismuth thin films

    Full text link
    The nonlinear Hall effect (NLHE) with time-reversal symmetry constitutes the appearance of a transverse voltage quadratic in the applied electric field. It is a second-order electronic transport phenomenon that induces frequency doubling and occurs in non-centrosymmetric crystals with large Berry curvature -- an emergent magnetic field encoding the geometric properties of electronic wavefunctions. The design of (opto)electronic devices based on the NLHE is however hindered by the fact that this nonlinear effect typically appears at low temperatures and in complex compounds characterized by Dirac or Weyl electrons. Here, we show a strong room temperature NLHE in the centrosymmetric elemental material bismuth synthesized in the form of technologically relevant polycrystalline thin films. The (1111\,1\,1) surface electrons of this material are equipped with a Berry curvature triple that activates side jumps and skew scatterings generating nonlinear transverse currents. We also report a boost of the zero field nonlinear transverse voltage in arc-shaped bismuth stripes due to an extrinsic geometric classical counterpart of the NLHE. This electrical frequency doubling in curved geometries is then extended to optical second harmonic generation in the terahertz (THz) spectral range. The strong nonlinear electrodynamical responses of the surface states are further demonstrated by a concomitant highly efficient THz third harmonic generation which we achieve in a broad range of frequencies in Bi and Bi-based heterostructures. Combined with the possibility of growth on CMOS-compatible and mechanically flexible substrates, these results highlight the potential of Bi thin films for THz (opto)electronic applications.Comment: 44 pages, 21 figure

    Terahertz signatures of ultrafast Dirac fermion relaxation at the surface of topological insulators

    Get PDF
    Topologically protected surface states present rich physics and promising spintronic, optoelectronic, and photonic applications that require a proper understanding of their ultrafast carrier dynamics. Here, we investigate these dynamics in topological insulators (TIs) of the bismuth and antimony chalcogenide family, where we isolate the response of Dirac fermions at the surface from the response of bulk carriers by combining photoexcitation with below-bandgap terahertz (THz) photons and TI samples with varying Fermi level, including one sample with the Fermi level located within the bandgap. We identify distinctly faster relaxation of charge carriers in the topologically protected Dirac surface states (few hundred femtoseconds), compared to bulk carriers (few picoseconds). In agreement with such fast cooling dynamics, we observe THz harmonic generation without any saturation effects for increasing incident fields, unlike graphene which exhibits strong saturation. This opens up promising avenues for increased THz nonlinear conversion efficiencies, and high-bandwidth optoelectronic and spintronic information and communication applications.Parts of this research were carried out at ELBE at the Helmholtz-Zentrum Dresden-Rossendorf e.V., a member of the Helmholtz Association. The films are grown in IRE RAS within the framework of the state task. This work was supported by the RFBR grants Nos. 18-29-20101, 19-02-00598. N.A., S.K., and I.I. acknowledge support from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 737038 (TRANSPIRE). T.V.A.G.O. and L.M.E. acknowledge the support by the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter (ct.qmat). K.-J.T. acknowledges funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 804349 (ERC StG CUHL) and financial support through the MAINZ Visiting Professorship. ICN2 was supported by the Severo Ochoa program from Spanish MINECO Grant No. SEV-2017-0706

    Impulsive Fermi magnon-phonon resonance in antiferromagnetic CoF2CoF_{2}

    Full text link
    Understanding spin-lattice interactions in antiferromagnets is one of the most fundamental issues at the core of the recently emerging and booming fields of antiferromagnetic spintronics and magnonics. Recently, coherent nonlinear spin-lattice coupling was discovered in an antiferromagnet which opened the possibility to control the nonlinear coupling strength and thus showing a novel pathway to coherently control magnon-phonon dynamics. Here, utilizing intense narrow band terahertz (THz) pulses and tunable magnetic fields up to 7 T, we experimentally realize the conditions of the Fermi magnon-phonon resonance in antiferromagnetic CoF2CoF_{2}. These conditions imply that both the spin and the lattice anharmonicities harvest energy transfer between the subsystems, if the magnon eigenfrequency fmf_{m} is twice lower than the frequency of the phonon 2fm=fph2f_{m}=f_{ph}. Performing THz pump-infrared probe spectroscopy in conjunction with simulations, we explore the coupled magnon-phonon dynamics in the vicinity of the Fermi-resonance and reveal the corresponding fingerprints of an impulsive THz-induced response. This study focuses on the role of nonlinearity in spin-lattice interactions, providing insights into the control of coherent magnon-phonon energy exchange

    (Mechano)synthesis of azomethine- and terpyridine-linked diketopyrrolopyrrole-based polymers

    Get PDF
    Three efficient synthetic approaches towards new azomethine- and terpyridine-containing 2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (diketopyrrolopyrrole, DPP) based polymers, such as P1 and P2, are reported. The first approach involves the Pd-catalyzed synthesis via two- or three-component Suzuki or Stille cross-coupling reaction in solution. The second approach involves Pd-catalyzed Suzuki cross-coupling reaction under ball-milling conditions. And, finally, the third approach involves Pd-free condensation reaction under ball-milling conditions. The newly obtained polymers exhibited absorbance around 700 nm and emission around 900 nm, and, thus, these polymers are considered to be NIR-fluorophores

    Spin-orbit interaction driven terahertz nonlinear dynamics in transition metals

    Full text link
    The interplay of electric charge, spin, and orbital polarizations, coherently driven by picosecond long oscillations of light fields in spin-orbit coupled systems, is the foundation of emerging terahertz spintronics and orbitronics. The essential rules for how terahertz light interacts with these systems in a nonlinear way are still not understood. In this work, we demonstrate a universally applicable electronic nonlinearity originating from spin-orbit interactions in conducting materials, wherein the interplay of light-induced spin and orbital textures manifests. We utilized terahertz harmonic generation spectroscopy to investigate the nonlinear dynamics over picosecond timescales in various transition metal films. We found that the terahertz harmonic generation efficiency scales with the spin Hall conductivity in the studied films, while the phase takes two possible values (shifted by {\pi}), depending on the d-shell filling. These findings elucidate the fundamental mechanisms governing non-equilibrium spin and orbital polarization dynamics at terahertz frequencies, which is relevant for potential applications of terahertz spin- and orbital-based devices.Comment: 11 pages, 4 figure

    Milliwatt terahertz harmonic generation from topological insulator metamaterials

    Get PDF
    Achieving efficient, high-power harmonic generation in the terahertz spectral domain has technological applications, for example in sixth generation (6G) communication networks. Massless Dirac fermions possess extremely large terahertz nonlinear susceptibilities and harmonic conversion efficiencies. However, the observed maximum generated harmonic power is limited, because of saturation effects at increasing incident powers, as shown recently for graphene. Here, we demonstrate room-temperature terahertz harmonic generation in a Bi2_2Se3_3 topological insulator and topological-insulator-grating metamaterial structures with surface-selective terahertz field enhancement. We obtain a third-harmonic power approaching the milliwatt range for an incident power of 75 mW - an improvement by two orders of magnitude compared to a benchmarked graphene sample. We establish a framework in which this exceptional performance is the result of thermodynamic harmonic generation by the massless topological surface states, benefiting from ultrafast dissipation of electronic heat via surface-bulk Coulomb interactions. These results are an important step towards on-chip terahertz (opto)electronic applications
    corecore