106 research outputs found

    Experiments on perturbed Saffman-Taylor flows

    Get PDF
    [eng] We have performed pattern formation experiments where a relatively well understood system (flow in a Hele-Shaw cell) is perturbed either by means of a lattice of grooves or by the use of viscoelastic fluids. We have extended the qualitative analysis found in the literature for anisotropic fingering patterns, presenting a more quantitative approach that may prove useful as a tool to attack more complex problems. We have analyzed the different morphological regimes and looked for signatures of the transition between phases, with partial success when we try to characterize a given morphology quantitatively. In our studies of viscoelastic Hele-Shaw flow with associative polymer solutions, we have observed a transition from viscous fingering patterns into a regime where the growing patterns resemble the fracture in brittle solids. We have been able to rescale the threshold for these transitions, and we have observed interesting properties in a regime of fracturelike patterns where, under sorne circumstances, we have measured a characteristic oscillation frequency which shows interesting regularities. We have also studied the pressure in the viscoelastic flow, and found consistent results that may be used to implement a better theoretical model to fully understand the dynamics

    Experiments with active and driven synthetic colloids in complex fluids

    Full text link
    In this review, we focus on recent experimental research involving active colloidal particles of non-biological origin evolving in non-Newtonian fluids. This includes self-propelling active particles and particles driven by external fields. We present different propulsion strategies that are either enabled, or strongly modified, by the presence of a complex medium. This paves the way for novel mechanisms of active transport in biofluids or in other non-Newnotian fluids. When considering the medium, we differentiate between disordered complex fluids, such as diluted polymer solutions, and liquid crystals. While the latter are also viscoelastic fluids, the ability to control their molecular orientation results in distinct colloidal driving and steering mechanisms, and enables new types of active soft matter in the form of active quasi-particles

    Continuous Rotation of Achiral Nematic Liquid Crystal Droplets Driven by Heat Flux

    Get PDF
    Suspended droplets of cholesteric (chiral nematic) liquid crystals spontaneously rotate in the presence of a heat flux due to a temperature gradient, a phenomenon known as the Lehmann effect. So far, it is not clear whether this effect is due to the chirality of the phase and the molecules or only to the chirality of the director field. Here, we report the continuous rotation in a temperature gradient of nematic droplets of a lyotropic chromonic liquid crystal featuring a twisted bipolar configuration. The achiral nature of the molecular components leads to a random handedness of the spontaneous twist, resulting in the coexistence of droplets rotating in the two senses, with speeds proportional to the temperature gradient and inversely proportional to the droplet radius. This result shows that a macroscopic twist of the director field is sufficient to induce a rotation of the droplets, and that the phase and the molecules do not need to be chiral. This suggests that one can also explain the Lehmann rotation in cholesteric liquid crystals without introducing the Leslie thermomechanical couplingÂżonly present in chiral mesophases. An explanation based on the Akopyan and Zeldovich theory of thermomechanical effects in nematics is proposed and discussed

    Modeling a photoinduced planar-to-homeotropic anchoring transition triggered by surface azobenzene units in a nematic liquid crystal

    Get PDF
    The performance of light-controlled liquid crystal anchoring surfaces depends on the nature of the photosensitive moieties and on the concentration of spacer units. Here, we study the kinetics of photosensitive liquid crystal cells that incorporate an azobenzene-based self-assembled monolayer. We characterize the photoinduced homeotropic-to-planar transition and the subsequent reverse relaxation in terms of the underlying isomerization of the photosensitive layer. We show that the response time can be precisely adjusted by tuning the lateral packing of azobenzene units by means of inert spacer molecules. Using simple kinetic assumptions and a well-known model for the energetics of liquid crystal anchoring we are able to capture the details of the optical microscopy experimental observations. Our analysis provides fitted values for all the relevant material parameters, including the zenithal and the azimuthal anchoring strength

    Tailoring plasmonic response by Langmuir-Blodgett gold nanoparticle templating for the fabrication of SERS substrates

    Get PDF
    Nanoparticle self-assembly is a robust and versatile strategy for the development of functional nanostructured materials, offering low-cost and scalable methods that can be fine-tuned for many different specific application. In this work, we demonstrate a pathway for the fabrication of tailorable quasitwo- dimensional lattices of gold nanoparticles to be used in Surface Enhanced Raman Scattering (SERS) detection of biomolecules. As a first step, nanoparticles are spread as a monolayer at the water/ air interface, compressed to a target lateral density in a Langmuir-Blodgett technique, and transferred to a properly functionalized substrate surface. Once firmly adhered to the substrate, the lattice of nanoparticles can be directly used or be further processed using electroless gold deposition to let the nanoparticle grow thus tuning the plasmonic response and SERS enhancement. Compared to direct deposition or self-assembly methods, our protocol enables to obtain consistent results and much higher coverage of Au nanoparticles thanks to the active control of the surface pressure of the spread monolayer

    Electric-field modulation of liquid crystal structures in contact with structured surfactant monolayers

    Get PDF
    We present experiments in which we use an electric field to switch between different configurations in the cellular patterns induced in a confined nematic liquid crystal by the contact with a surfactant monolayer that features lateral order and surface defects. By using different combinations of far-field alignment and mesogen dielectric anisotropy, we unravel the nature and stability of point defects and disclinations resulting from the hybrid boundary conditions

    Self-organizing propagation patterns from dynamic self-assembly in monolayers

    Get PDF
    Propagation of localized orientational waves, as imaged by Brewster angle microscopy, is induced by low intensity linearly polarized light inside axisymmetric smectic-C confined domains in a photosensitive molecular thin film at the air/water interface (Langmuir monolayer). Results from numerical simulations of a model that couples photoreorientational effects and long-range elastic forces are presented. Differences are stressed between our scenario and the paradigmatic wave phenomena in excitable chemical media

    Control of active liquid crystals with a magnetic field

    Get PDF
    Living cells sense the mechanical features of their environment and adapt to it by actively remodeling their peripheral network of filamentary proteins, known as cortical cytoskeleton. By mimicking this principle, we demonstrate an effective control strategy for a microtubule-based active nematic in contact with a hydrophobic thermotropic liquid crystal. By using well-established protocols for the orientation of liquid crystals with a uniform magnetic field, and through the mediation of anisotropic shear stresses, the active nematic reversibly self-assembles with aligned flows and textures that feature orientational order at the millimeter scale. The turbulent flow, characteristic of active nematics, is in this way regularized into a laminar flow with periodic velocity oscillations. Once patterned, the microtubule assembly reveals its intrinsic length and time scales, which we correlate with the activity of motor proteins, as predicted by existing theories of active nematics. The demonstrated commanding strategy should be compatible with other viable active biomaterials at interfaces, and we envision its use to probe the mechanics of the intracellular matrix

    Control of active nematics with passive liquid crystals

    Get PDF
    Motor-proteins are responsible for transport inside cells. Harnessing their activity is key towards developing new nano-technologies, or functional biomaterials. Cytoskeleton-like networks result fromthe selfassembly of subcellular autonomous units. Taming this biological activity bottom-up may thus require molecular level alterations compromising protein integrity. Taking a top-down perspective, herewe prove that the seemingly chaotic flows of a tubulin-kinesin active gel can be forced to adopt well-defined spatial directions by tuning the anisotropic viscosity of a contacting Smectic-A liquid crystal. Different configurations of the activematerial are realized,when the thermotropic liquid crystal is either unforced or commanded by a magnetic field. The inherent instability of the extensile active fluid is thus spatially regularized, leading to organized flow patterns, endowed with characteristic length and time scales. Our finding paves the way for designing hybrid active/passive systems where ATP-driven dynamics can be externally conditioned

    Chemical Leslie effect in Langmuir monolayers: a complete experimental characterization

    Get PDF
    We propose a complete characterization of the chemical Leslie effect in a Langmuir monolayer of a chiral liquid crystal. To reach this goal, we developed new experimental techniques using an electric field and a humidifier to prepare large monodomains in which the molecules can freely rotate. We also designed six independent experiments to precisely measure the four material constants involved in the dynamics of the monolayer, namely the Leslie coefficient, the rotational viscosity, the curvature elasticity constant and the surface polarization. The relevance of the inverse Leslie effect is also discussed
    • …
    corecore