145 research outputs found
Endothelial nitric oxide synthase gene polymorphisms associated with periodontal diseases in Turkish adults
Endothelial nitric oxide synthase (NOS3) is involved in key steps of immune response. Genetic factors predispose individuals to periodontal disease. This study's aim was to explore the association between NOS3 gene polymorphisms and clinical parameters in patients with periodontal disease. Genomic DNA was obtained from the peripheral blood of 23 subjects with aggressive periodontitis (AgP), 26 with chronic periodontitis (CP), 31 with gingivitis (G) and 50 healthy controls. Probing depth (PD), clinical attachment loss (CAL), plaque index (PI) and gingival index (GI) were recorded as clinical parameters. We genotyped NOS3 polymorphisms using the PCR and/or PCR-RFLP method. Genotype frequencies differed significantly among periodontal diseases and controls for these polymorphisms. A significant association was detected between NOS3 +894 polymorphism and PD and CAL in the CP and AgP patient groups; whereas NOS VNTR analysis detected no associations with clinical parameters in theCP and AgP groups. However, a significant association was detected between the AA genotype and both PI and GI in patients with gingivitis; and a significant association was shown between the BB genotype and PI. The present study shows that two common polymorphisms of the NOS3 gene cluster are significantly associated with the occurrence of periodontal diseases
Phosphine Oxide Derivative as a Passivating Agent to Enhance the Performance of Perovskite Solar Cells
Defects of metal-halide perovskites detrimentally influence the optoelectronic properties of the thin film and, ultimately, the photovoltaic performance of perovskite solar cells (PSCs). Especially, defect-mediated nonradiative recombination that occurs at the perovskite interface significantly limits the power conversion efficiency (PCE) of PSCs. In this regard, interfacial engineering or surface treatment of perovskites has become a viable strategy for reducing the density of surface defects, thereby improving the PCE of PSCs. Here, an organic molecule, tris(5-((tetrahydro-2H-pyran-2-yl)oxy)pentyl)phosphine oxide (THPPO), is synthesized and introduced as a defect passivation agent in PSCs. The P=O terminal group of THPPO, a Lewis base, can passivate perovskite surface defects such as undercoordinated Pb2+. Consequently, improvement of PCEs from 19.87 to 20.70% and from 5.84 to 13.31% are achieved in n−i−p PSCs and hole-transporting layer (HTL)-free PSCs, respectively
Modern venomics – Current insights, novel methods and future perspectives in biological and applied animal venom research
Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit
The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family
LINGUAL THYROID - THE DIAGNOSTIC-VALUE OF MAGNETIC-RESONANCE-IMAGING
Lingual thyroid is an uncommon developmental aberration of embryogenesis. It may present as a mid-line, non-tender, painless, reddish appearing swelling in the throat. Magnetic resonance imaging (MRI) is a relatively new diagnostic method for this condition. Two cases of lingual thyroid are reviewed with their MRI's and surgical results
- …
