66 research outputs found

    Quantification system for the viral dynamics of a highly pathogenic simian/human immunodeficiency virus based on an in vitro experiment and a mathematical model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Developing a quantitative understanding of viral kinetics is useful for determining the pathogenesis and transmissibility of the virus, predicting the course of disease, and evaluating the effects of antiviral therapy. The availability of data in clinical, animal, and cell culture studies, however, has been quite limited. Many studies of virus infection kinetics have been based solely on measures of total or infectious virus count. Here, we introduce a new mathematical model which tracks both infectious and total viral load, as well as the fraction of infected and uninfected cells within a cell culture, and apply it to analyze time-course data of an SHIV infection <it>in vitro</it>.</p> <p>Results</p> <p>We infected HSC-F cells with SHIV-KS661 and measured the concentration of Nef<it>-</it>negative (target) and Nef<it>-</it>positive (infected) HSC-F cells, the total viral load, and the infectious viral load daily for nine days. The experiments were repeated at four different MOIs, and the model was fitted to the full dataset simultaneously. Our analysis allowed us to extract an infected cell half-life of 14.1 h, a half-life of SHIV-KS661 infectiousness of 17.9 h, a virus burst size of 22.1 thousand RNA copies or 0.19 TCID<sub>50</sub>, and a basic reproductive number of 62.8. Furthermore, we calculated that SHIV-KS661 virus-infected cells produce at least 1 infectious virion for every 350 virions produced.</p> <p>Conclusions</p> <p>Our method, combining <it>in vitro </it>experiments and a mathematical model, provides detailed quantitative insights into the kinetics of the SHIV infection which could be used to significantly improve the understanding of SHIV and HIV-1 pathogenesis. The method could also be applied to other viral infections and used to improve the <it>in vitro </it>determination of the effect and efficacy of antiviral compounds.</p

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    EXPERIMENTAL INFECTION OF FELINE IMMUNODEFICIENCY VIRUS

    Get PDF

    EXPERIMENTAL INFECTION OF FELINE IMMUNODEFICIENCY VIRUS

    No full text

    Generation of a monkey-tropic human immunodeficiency virus type 1 carrying env from a CCR5-tropic subtype C clinical isolate

    Get PDF
    Several derivatives of human immunodeficiency virus type 1 (HIV-1) that evade macaque restriction factors and establish infection in pig-tailed macaques (PtMs) have been described. These monkey-tropic HIV-1s utilize CXCR4 as a co-receptor that differs from CCR5 used by most currently circulating HIV-1 strains. We generated a new monkey-tropic HIV-1 carrying env from a CCR5-tropic subtype C HIV-1 clinical isolate. Using intracellular homologous recombination, we generated an uncloned chimeric virus consisting of at least seven types of recombination breakpoints in the region between vpr and env. The virus increased its replication capacity while maintaining CCR5 tropism after in vitro passage in PtM primary lymphocytes. PtM infection with the adapted virus exhibited high peak viremia levels in plasma while the virus was undetectable at 12–16 weeks. This virus serves as starting point for generating a pathogenic monkey-tropic HIV-1 with CCR5-tropic subtype C env, perhaps through serial passage in macaques

    No Viral Evolution in the Lymph Nodes of Simian Immunodeficiency Virus-Infected Rhesus Macaques during Combined Antiretroviral Therapy.

    Get PDF
    To elucidate the mode of viral persistence in primate lentivirus-infected individuals during combination antiretroviral therapy (cART), four simian immunodeficiency virus 239-infected monkeys were treated with cART for 1 year. The viral env genes prepared from total RNA extracted from the mesenteric lymph nodes collected at the completion of therapy were assessed by single genome amplification. Analyses of nucleotide substitutions and phylogeny revealed no viral evolution during cART

    Improvement of Enzymatic Saccharification of Unbleached Cedar Pulp with Amphipathic Lignin Derivatives

    Get PDF
    Synthesized amphipathic lignin derivatives comprised of acidic acid lignin (AL) with poly(ethylene glycol) diglycidyl ether (PEGDE), ethoxy-(2-hydroxy)-propoxy-poly(ethylene glycol) glycidyl ether (EPEG) or dodecyloxy-poly(ethylene glycol) glycidyl ether (DAEO) were added before the enzymatic saccharification of unbleached cedar pulp along with two commercially available cellulases, Meicelase and Genencor GC220. At the same filter paper unit (FPU) dosage, GC220 showed higher sugar yield than Meicelase. The difference was attributed to the composition of processive and non-processive endoglucanase activities per FPU; GC220 had higher such activities than Meicelase. The sugar yield was significantly improved by the addition of the lignin derivatives. In addition, residual activities after the saccharification were maintained at the higher level by their addition than with polyethylene glycol (PEG) 4000. In particular, EPEG-AL yielded the complete recovery of cellulase activity when using 20 FPU/g of substrate. It was found that the lignin derivatives were directly associated with Cel6A, one of cellulase components, whereas PEG 4000 was not. Thus, it is evident that the lignin derivatives are promising agents to improve the enzymatic saccharification of cellulase

    Generation of a replication-competent chimeric simian-human immunodeficiency virus carrying env from subtype C clinical isolate through intracellular homologous recombination.

    Get PDF
    A new simian-human immunodeficiency virus (SHIV), carrying env from an uncloned HIV-1 subtype C clinical isolate (97ZA012), was generated through intracellular homologous recombination, a DNA repair mechanism of the host cell. PCR fragments amplified from an existing SHIV plasmid (a 7-kb fragment from the 5' end and a 1.5-kb fragment from the 3' end) and a 4-kb fragment amplified from 97ZA012 cDNA containing env were co-transfected to human lymphoid cells. The resulting recombinant was subjected to serial passage in rhesus peripheral blood mononuclear cells (RhPBMCs). The resulting SHIV 97ZA012 was replication competent in RhPBMCs and monkey alveolar macrophages, and possessed CCR5 preference as an entry co-receptor. Experimental infection of rhesus macaques with SHIV 97ZA012 caused high titers of plasma viremia and a transient but profound depletion of CD4(+) T lymphocytes in the lung. Animal-to-animal passage was shown to be a promising measure for further adaptation of the virus in monkeys

    Characterization of RD-114 Virus Isolated from a Commercial Canine Vaccine Manufactured Using CRFK Cells ▿

    No full text
    Recently, we found that several commercial pet vaccines were contaminated with an infectious endogenous retrovirus, RD-114-related virus. Here, we determined the entire nucleotide sequences of RD-114-related viruses isolated from CRFK cells and a vaccine manufactured using CRFK cells. These RD-114-related viruses were nearly identical to the authentic RD-114 virus
    corecore