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Abstract 15 

Several derivatives of human immunodeficiency virus type 1 (HIV-1) that evade 16 

macaque restriction factors and establish infection in pig-tailed macaques (PtMs) have 17 

been described. These monkey-tropic HIV-1s utilize CXCR4 as a co-receptor that 18 

differs from CCR5 used by most currently circulating HIV-1 strains. We generated a 19 

new monkey-tropic HIV-1 carrying env from a CCR5-tropic subtype C HIV-1 clinical 20 

isolate. Using intracellular homologous recombination, we generated an uncloned 21 

chimeric virus consisting of at least seven types of recombination breakpoints in the 22 

region between vpr and env. The virus increased its replication capacity while 23 

maintaining CCR5 tropism after in vitro passage in PtM primary lymphocytes. PtM 24 

infection with the adapted virus exhibited high peak viremia levels in plasma while the 25 

virus was undetectable at 12 - 16 weeks. This virus serves as starting point for 26 

generating a pathogenic monkey-tropic HIV-1 with CCR5-tropic subtype C env, 27 

perhaps through serial passage in macaques. 28 
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Introduction 41 

Nonhuman primate models with human-like immune systems are often employed to 42 

evaluate the efficacy of candidate vaccines against acquired immune deficiency 43 

syndrome (AIDS). However, human immunodeficiency virus type 1 (HIV-1) infects 44 

humans or chimpanzees (Pan troglodytes) but not rhesus macaques (Macaca mulatta), 45 

the most widely used primate species in biomedical research (Gibbs et al., 2007). 46 

Experimental infection of macaques with simian immunodeficiency virus (SIV) or 47 

simian-human immunodeficiency virus (SHIV) has been used extensively to investigate 48 

HIV-1 infection in vivo. Pathogenic infection with SIV allows insight into the 49 

mechanisms of pathogenesis and provides information for development of novel 50 

vaccination strategies. However, due to the marked antigenic difference in viral proteins 51 

between HIV-1 and SIV, macaque models with SIV are not suitable for evaluating the 52 

immune response directed against HIV-1 (Javaherian et al., 1992; Kanki et al., 1985; 53 

Murphey-Corb et al., 1986). SHIV, a chimeric virus carrying tat, rev, vpu and env from 54 

HIV-1 with an SIV genetic backbone, has been constructed and used widely to assess 55 

the immune response and pathogenicity directed against HIV-1 Env (Shibata and 56 
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Adachi, 1992; Reimann, et al., 1996; Harouse, et al., 1999)  57 

    Highly pathogenic SHIV irreversibly depletes circulating CD4+ T-lymphocytes, 58 

and cause rapidly AIDS-like symptoms in infected macaques. These properties are, 59 

however, different from the vast majority of circulating HIV-1 or SIV isolates, and the 60 

discrepancy would be attributed to the viral co-receptor preference (Nishimura et al., 61 

2004). Entry of HIV-1 into cells is mediated through the interaction of viral envelope 62 

protein with cellular CD4 and subsequent binding to either the CCR5 or CXCR4 63 

chemokine receptor or both receptors. The vast majority of HIV-1 clinical isolates 64 

preferentially utilize CCR5 as the co-receptor for entry (Choe et al., 1996). The 65 

CXCR4-tropic or dual-tropic viruses that utilize both CCR5 and CXCR4 emerge during 66 

late stages in the disease course (Doranz et al., 1996; Feng et al., 1996). 67 

    In addition to the co-receptor usage, it is necessary to consider the variation of env 68 

gene in SHIV construction. Most HIV-1 strains currently circulating belong to group M, 69 

consisting of subtypes A–D, F–H, J, K and their recombinants, and are largely 70 

responsible for the global AIDS pandemic (Hemelaar, 2012). Most of early SHIVs are 71 

generated by utilizing genes derived from subtype B viruses, which comprise an 72 
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estimated 11% of the global prevalence of HIV-1. By contrast, subtype C is the 73 

dominant subtype, accounting for almost 50% of global infections. Subtype C viruses 74 

do not share the antigenicity of Env as the main target of neutralizing antibodies with 75 

subtype B viruses (Choisy et al., 2004; Gaschen et al., 2002). The V3 loop region of the 76 

subtype C envelope is less variable than that of other subtypes (Kuiken et al., 1999), and 77 

mutations appear to accumulate in the C3 and V4 regions, which are targets of 78 

autologous neutralizing antibody responses in individuals infected with subtype C 79 

viruses (Moore et al., 2008; Moore et al., 2009). The structure of these epitopes is 80 

dissimilar between subtypes B and C (Gnanakaran et al., 2007). There are pathogenic 81 

SHIVs that encode CCR5 tropic subtype C env gene (Ndung’u et al., 2001; Ren et al., 82 

2013; Song et al., 2006). 83 

    Conventional SHIV that encodes SIV sequence in 5’ half of the genome has 84 

limited utility in the evaluation of cell-mediated immunity induced by a vaccine because 85 

it does not contain HIV-1 Gag in its genome; consequently, SHIV has different major 86 

epitopes for cytotoxic T lymphocytes (CTLs) known to be associated with lowering the 87 

plasma viral load in HIV-1 infection (Goulder and Watkins, 2004; Kiepiela et al., 2007). 88 
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Recently, two major restriction factors were reported to block HIV-1 replication in 89 

monkey cells in a species-specific manner (Neil and Bieniasz, 2009). The restriction 90 

factor apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G 91 

(APOBEC3G) protein is incorporated into viral particles and induces hypermutation in 92 

proviral DNA in target cells mediated by its cytidine deaminase activity (Sheehy et al., 93 

2002). Macaque APOBEC3G proteins are counteracted by the SIV Vif protein but not 94 

by HIV-1 Vif (Mariani et al., 2003). The other major restriction factor that inhibits the 95 

viral replication cycle is tripartite motif 5α (TRIM5α) protein, which directly recognizes 96 

incoming viral capsid (CA) (Stremlau et al., 2004). HIV-1 CA can bind cyclophilin A 97 

(CypA), a ubiquitous cytosolic protein, to evade restriction by human TRIM5α, whereas 98 

the CypA-binding activity appears to enhance TRIM5α recognition in macaque cells 99 

(Berthoux et al., 2005; Keckesova et al., 2006; Stremlau et al., 2006). It is known that 100 

the host species barrier of Pig-tailed macaques (PtMs) (Macaca nemestrina) against 101 

HIV-1 is weaker than other macaques because they do not have the TRIM restriction 102 

(Brennan et al., 2008). 103 

    Based on these findings, derivatives of HIV-1 that has a remarkably different 104 
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structure from the conventional SHIV were constructed by the introduction of minor 105 

genetic modifications into its genome to overcome the restriction factors in macaque 106 

cells. Hatziioannou et al. (2006) generated simian-tropic HIV-1 (stHIV-1) by replacing 107 

the entire vif gene of HIV-1 with that of SIVmac or HIV type 2. Kamada et al. (2006) 108 

reported the monkey-tropic HIV-1 (HIV-1mt) NL-DT5R, in which the CypA-binding 109 

motif of the CA protein is substituted by the corresponding sequence of SIVmac, and 110 

the entire vif gene is also substituted. Thippeshappa et al. (2011) generated HSIV-vif, a 111 

clone of HIV-1 by substituting the vif gene with that of a pathogenic SIVmne clone. 112 

These derivatives of HIV-1 established persistent infection in PtMs for months but were 113 

controlled thereafter (Hatziioannou et al., 2009; Igarashi et al., 2007; Thippeshappa et 114 

al., 2011). These monkey-tropic HIV-1 derivatives currently available are not 115 

CCR5-tropic; NL-DT5R and HSIV-Vif encode env from a CXCR4-tropic, and stHIV-1 116 

encodes env from dual-tropic subtype B viruses. 117 

    In this study, we generated a new HIV-1mt strain carrying env from a CCR5-tropic 118 

subtype C HIV-1 clinical isolate. We employed intracellular homologous recombination 119 

(IHR) to produce the recombinant virus. Since the viral swarm generated by IHR did 120 
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not show efficient replication in PtM primary cells, we conducted in vitro serial 121 

passages of the virus. Thus, we successfully generated a viral swarm that exhibited an 122 

enhanced replication capacity in PtM cells and established infection in PtMs with high 123 

peak viremia comparable to the currently available monkey-tropic HIV-1 derivatives. 124 

125 
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Results 125 

Generation of a new HIV-1mt carrying CCR5-tropic subtype C Env through IHR              126 

We employed IHR to generate recombinant viruses (Fujita et al., 2013). First, we 127 

prepared DNA fragments by polymerase chain reaction (PCR) amplification of a region 128 

spanning the 5´ long terminal repeat (LTR) to upstream of the V1/V2 region in env 129 

(nucleotide positions 1–6784 based on HXB2 numbering; accession number: K03455) 130 

using the plasmid DNA template encoding the full-length NL-DT5R proviral genome 131 

(fragment I in Fig. 1A). This fragment encodes a CypA-binding motif derived from the 132 

corresponding sequence of SIVmac239 to evade restriction from macaque TRIM5α, and 133 

the entire SIVmac239 vif gene to counteract the macaque APOBEC3G. Second, a 134 

region spanning the vpr gene to the R region of the 3´ LTR (nucleotide positions 135 

5558–9625 based on HXB2 numbering) was amplified from the HIV-1 97ZA012 strain 136 

(fragment II in Fig. 1B). To increase the possibility to obtain a virus that can replicate in 137 

monkeys well, we thought that it was better to generate swarm viruses having variation 138 

without cloning. Resultant recombinant virus might fail to replicate normally if 139 

recombination occurred between fragments I and II that resulted in the 5´ LTR of 140 
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subtype B and the 3´ LTR of subtype C. The discordance of the 3´ and 5´ LTR may 141 

disrupt successful translocation of the minus strand strong stop DNA to the plus strand 142 

genomic RNA during reverse transcription (Goff, 2007). To match the sequence of the 143 

3´ LTR to that of the 5´ LTR, we prepared a third DNA fragment encoding a region 144 

spanning the 5´ LTR to the middle of gag (nucleotide positions 1–1433 based on HXB2 145 

numbering) from the proviral DNA extracted from HIV-1 97ZA012-infected cells 146 

(fragment III in Fig. 1B). Fragments I and II had an overlapping region between the 147 

initiation of vpr to upstream of the env V1/V2 region, and fragments I and III had an 148 

overlapping region between the 5´ LTR to upstream of the CypA-binding site. 149 

   These amplified DNA fragments (fragments I, II and III) were co-transfected into 150 

C8166-CCR5 cells that are permissive to CCR5-tropic HIV-1. On day 8 151 

post-transfection, we observed the formation of virus-induced cytopathic effects (CPEs), 152 

indicating the generation of replication-competent recombinant virus. The new 153 

recombinant virus was isolated and designated HIV-1mt ZA012-P0. 154 

   To determine the genomic organization of HIV-1mt ZA012-P0, we subjected the 155 

viral RNA isolated from the culture supernatant to direct sequencing. We found that the 156 
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virus carried sequences of the U5 region of the 5´ LTR, gag, pol and vif derived from 157 

NL-DT5R and sequences of 3´ half of env, nef, and R and the U3 region of the 3´ LTR 158 

derived from 97ZA012 (Fig. 1C). First, the recombination breakpoint derived from 159 

fragments I and III was found to be located within the junction between the U5 and R 160 

region of the 5´ LTR (nucleotide positions 551–605 based on HXB2 numbering). 161 

However, additional recombination breakpoints between fragments I and II, encoding 162 

the vpr-env region, were not identified due to multiple peaks at the same locations in the 163 

analyzed sequence chromatograms. This result suggested that HIV-1mt ZA012-P0 164 

represented a swarm that might contain several variants with various recombination 165 

breakpoints. 166 

 167 

Increased replication competence of HIV-1mt ZA012 through long-term in vitro 168 

passage in CD8+ cell-depleted pig-tailed macaque peripheral blood mononuclear 169 

cells (PBMCs). 170 

We subsequently determined whether HIV-1mt ZA012-P0 replicates in CD8+ 171 

cell-depleted pig-tailed macaque peripheral blood mononuclear cells (PtM PBMCs), in 172 
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which the parental NL-DT5R replicated as described previously (Kamada et al., 2006). 173 

HIV-1mt ZA012-P0 from the culture supernatant of C8166-CCR5 was used to 174 

spinoculate CD8+ cell-depleted PtM PBMCs, and the virion-associated reverse 175 

transcriptase (RT) activity was monitored in the culture supernatant (Fig. 2); however, 176 

no RT activity was detected in the culture supernatant after passage 1 (Fig. 2).  177 

   Next we carried out in vitro serial passages to improve the replication competence 178 

of the virus as observed in the cases of HIV-1 (Freed and Martin, 1996; Willey et al., 179 

1988). Infected cells were co-cultured with freshly prepared CD8+ cell-depleted PtM 180 

PBMCs every 1 or 2 weeks. Although detectable RT activity was not observed during 181 

10 successive passages (passage 1–10), a low level of viral replication was confirmed 182 

by the CPEs of C8166-CCR5 cells co-cultured with PBMCs taken from the passage 183 

(data not shown). A detectable peak of viral replication (319 cpm/µL) was observed at 184 

115 days after the first inoculation (passage 11), and replication was maintained 185 

following passages, eventually resulting in enhanced replication in PtM PBMCs 186 

(1900 cpm/µL in passage 19). The resultant virus, isolated from the culture supernatant 187 

of passage 19, was designated HIV-1mt ZA012-P19. 188 
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   To evaluate the replication capacity of the virus, the replication kinetics of HIV-1mt 189 

ZA012-P19 were compared to those of the parental NL-DT5R and HIV-1mt ZA012-P0. 190 

Each viral stock was normalized by the number of infectious units per cell (in this case, 191 

a multiplicity of infection (MOI) of 0.1) and used to inoculate CD8+ cell-depleted PtM 192 

PBMCs isolated from two donor monkeys; virion-associated RT activity in the culture 193 

supernatant was monitored daily (Fig. 3). Although HIV-1mt ZA012-P19 exhibited a 194 

lower level of viral replication compared to that of SIVmac239, the virus showed more 195 

efficient replication than NL-DT5R and HIV-1mt ZA012-P0 in cells from both animals. 196 

Therefore, we successfully improved the replication capacity of the new HIV-1mt in 197 

PtM PBMCs by in vitro passaging. 198 

 199 

Sequence analysis of HIV-1mt ZA012-P0 and ZA012-P19 200 

It is likely that HIV-1mt ZA012-P0 acquired genetic changes and evolved to HIV-1mt 201 

ZA012-P19 through the serial passages in PtM PBMCs. To compare the genomic 202 

sequence of these viruses, we first performed single genome amplification (SGA) of 203 

viral RNA isolated from the culture supernatant to determine the nucleic acid sequences 204 
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of the vpr-env region (nucleotide positions 5559–8795 based on HXB2) of 205 

HIV-1mt ZA012-P0. Subsequently, we identified the sequence of the region containing 206 

the expected recombination breakpoints generated by IHR between fragments I and II. 207 

Genetic analysis of 17 SGA clones revealed that these sequences had NL-DT5R 208 

sequences in the 5´ end and HIV-1 97ZA012 sequences in the 3´ end, with seven 209 

different recombination breakpoints in the region (Fig. 4). One recombination 210 

breakpoint was detected at nucleotide positions 178–187 of the vpr gene in 1/17 SGA 211 

sequences (5736–5745 in HXB2 numbering, recombination type R1) with 10 identical  212 

base pairs between NL-DT5R and 97ZA012. In addition to R1, we identified the 213 

following recombination types: the vpr gene in 3/17 SGA sequences (5760–5767; R2), 214 

the initiation of tat in 2/17 SGA sequences, (5821–5839; R3), the end of the vpr gene in 215 

1/17 SGA sequence (5852–5865; R4), the initiation of rev in 6/17 SGA sequences 216 

(5960–6000; R5), the end of the vpu gene in 1/17 SGA sequence (6357–6392; R6) and 217 

the upstream of V1/V2 of the env gene in 3/17 SGA sequences (6467–6491; R7). These 218 

results suggest that homologous recombination occurs in various sites with homologous 219 

sequences. 220 
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   Next, seven SGA sequences were amplified from viral RNA isolated from the 221 

culture supernatant of PtM PBMCs infected with HIV-1mt ZA012-P19, and nucleotide 222 

sequences and recombination breakpoints were determined in the same manner. 223 

Unexpectedly, all the sequences of HIV-1mt ZA012-P19 had three recombination 224 

breakpoints in the region from the vpr to env genes (recombination type R8 in Fig. 4). 225 

The first breakpoint was located in the vpr gene (5760–5767), the second was located in 226 

the vpu gene (6194–6213), and the third was located in env (6467–6491) with the 227 

N-terminal portion of C1 region from NL4-3 sequence. Although the pattern of 228 

recombination breakpoint of the virus differed from those of HIV-1mt ZA012-P0, the 229 

first and third recombination breakpoints were identical to the recombination type of R2 230 

and R7, respectively (Fig. 4). It is likely that HIV-1mt ZA012-P19 was generated from 231 

further recombination events that occurred in the middle of the vpu gene (6194–6213) 232 

between recombination type R2 and R7 of HIV-1mt ZA012-P0. 233 

   It is conceivable that the genome of HIV-1mt ZA012-P19 acquired several amino 234 

acid mutations associated with the enhanced replication in PtM PBMCs. Compared with 235 

the deduced amino acid sequences in HIV-1mt ZA012-P0, HIV-1mt ZA012-P19 236 
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acquired substitutions from Lys to Arg at amino acid position 432 in Pol-RT and Asp to 237 

Glu at position 232 in Pol-IN that were in the NL-DT5R backbone. In addition, an 238 

amino acid substitution from Phe to Ser at 139 in Nef was found in 239 

HIV-1mt ZA012-P19 compared to 17 SGA sequences derived from HIV-1mt 240 

ZA012-P0. No nonsynonymous substitutions were identified in Gag and Vif, the 241 

proteins responsible for evading TRIM5α and APOBEC3. Around the recombination 242 

break points in HIV-1mt ZA012-P19, the vpr and vpu genes keep each open reading 243 

frame and do not contain any mutations in the region derived from NL-DT5R, 244 

respectively. Furthermore, consensus amino acid sequence of P0 and P19 were also 245 

identical in the regions derived from HIV-1 97ZA012, respectively. These facts suggest 246 

that recombination was occurred to keep these genes intact. 247 

 248 

Phylogenetic analysis of env genes 249 

It is likely that HIV-1mt ZA012-P0 generated by IHR in human C8166-CCR5 cells was 250 

a swarm carrying diverse env sequences of the parental HIV-1 97ZA012, which evolved 251 

to HIV-1mt ZA012-P19 through in vitro passages. To evaluate the env variants selected 252 
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in C8166-CCR5 cells or primary PtM cells, we determined 22 sequences of HIV-1 253 

97ZA012, 17 sequences of HIV-1mt ZA012-P0 and seven sequences of HIV-1mt 254 

ZA012-P19 from SGA. Next, we conducted a phylogenetic analysis of the nucleotide 255 

sequences of the 3´ terminal 2361 bp of each viral env derived from HIV-1 97ZA012 256 

and shared by all variants of HIV-1mt ZA012-P0 and -P19 (Fig. 5). These sequences 257 

were divided into two clusters: the larger cluster included 19 sequences of HIV-1 258 

97ZA012, 8 sequences of HIV-1mt ZA012-P0 and 7 sequences of HIV-1mt 259 

ZA012-P19; and the smaller cluster included 3 sequences of HIV-1 97ZA012 and 9 260 

sequences of HIV-1mt ZA012-P0. Recombination types R2, R3, R5 and R7 (Figure 4) 261 

were intermingled among the sequences of the two groups, suggesting that homologous 262 

recombination could occur in various env templates. 263 

   To compare the genetic diversity of env in these viruses, we computed the mean of 264 

all pair-wise distances between any two viral env sequences in each of the viruses. The 265 

computed diversity of env in HIV-1mt ZA012-P0 was 0.0038 ± 0.0025 (± standard 266 

deviation, SD), which was significantly lower than that in the parental HIV-1 97ZA012 267 

(0.0044 ± 0.0021; p < 0.05). The computed diversity of HIV-1mt ZA012-P19 env was 268 
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0.0012 ± 0.00078, which showed significantly lower variation compared to HIV-1mt 269 

ZA012-P0 (p < 0.0001).  270 

 271 

Co-receptor usage of HIV-1mt ZA012-P19 272 

To characterize co-receptor usage of HIV-1mt ZA012-P19 after long-term in vitro 273 

passage, we conducted an entry assay using TZM-bl cells with small molecule 274 

antagonists (Fig. 6). Viral infectivity of the CXCR4-tropic virus (NL4-3) was reduced 275 

in the presence of an increasing amount of the CXCR4 inhibitor, AMD3100, but was 276 

not affected by the CCR5 inhibitor, AD101. In contrast, the CCR5-tropic virus, 277 

SIVmac239, was inhibited in the presence of an increasing amount of AD101 but not by 278 

AMD3100. Similar to the results using SIVmac239, HIV-1mt ZA012-P19 exhibited 279 

sensitivity to inhibition by AD101 but resistance to AMD3100, indicating that the virus 280 

maintained its CCR5-tropism after the serial passage. 281 

 282 

Replication of HIV-1mt ZA012 in pig-tailed macaques 283 

Since HIV-1mt ZA012-P19 utilized CCR5 as a co-receptor and exhibited increased 284 
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infectivity to primary cells of PtMs, we next assessed the in vivo replication capacity of 285 

the virus by experimental infection of PtMs. Two PtMs were inoculated intravenously 286 

with 1.0 × 105 TCID50 of the HIV-1mt prepared in PtM PBMCs, and plasma viral RNA 287 

burdens and the numbers of circulating CD4+ T-lymphocytes were monitored 288 

periodically (Fig. 7A). Plasma viral RNA loads in PtM01 peaked (1.0 × 106 copies/mL) 289 

at 2 week post-infection (wpi) and declined thereafter to levels below the detection limit 290 

at 8 wpi. PtM02 exhibited a peak plasma viral RNA burden (2.3 × 106 copies/mL) at 1.5 291 

wpi and maintained more than 1 × 104 copies/mL by 9 wpi, but the viral load declined 292 

to levels below the detection limit at 16 wpi. The numbers of CD4+ T-lymphocytes in 293 

the circulation in both animals were not affected (Fig. 7B). Furthermore, we analyzed 294 

naive and memory populations of CD4+ T cells and no preferential depletion of 295 

circulating memory CD4+ T-lymphocyte was observed (data not shown). 296 

297 



 21 

Discussion 297 

In this study, we used IHR to generate a new HIV-1mt carrying env from the 298 

CCR5-tropic subtype C HIV-1 clinical isolate. This recombination method has been 299 

used to generate infectious HIV-1 or SHIV by joining two linear DNAs in regions with 300 

completely identical sequences (Chen et al., 2000; Kalyanaraman et al., 1988; Kellam 301 

and Larder, 1994; Luciw et al., 1995; Srinivasan et al., 1989; Velpandi et al., 1991). 302 

Recently, we applied IHR to generate a replication-competent SHIV carrying subtype C 303 

env that was inserted within the env sequence of subtype B (Fujita et al., 2013). Here, 304 

we utilized the same method to generate HIV-1mt by replacing a coding sequence 305 

region from subtype B with that of a primary isolate of subtype C and investigated 306 

recombination breakpoints in detail by analyzing the sequences of the resultant viruses. 307 

We found seven variants with different recombination breakpoints that were located 308 

within overlapped sequences between fragments I and II. These variants were selected 309 

as replication-competent virus in C8166-CCR5 cells that maintained their variability, 310 

suggesting that IHR events occur frequently in cells co-transfected with DNA fragments. 311 

In addition, it appears that the length of identical sequence of as short as 8 bp is 312 
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sufficient for IHR (recombination type R2 in Fig. 4). Furthermore, IHR is suggested to 313 

occur between various DNA templates, based on the phylogenetic analysis results that 314 

indicated intermingled types of recombination breakpoints among different env 315 

sequences. 316 

   To develop a virus that efficiently infects monkey cells, it is important to choose an 317 

env that mediates efficient entry to macaque cells. The Env proteins in most A–D 318 

subtypes of HIV-1 clinical isolates from infected individuals during the acute phase of 319 

infection do not mediate efficient entry using macaque CD4 receptors (Humes et al., 320 

2012). In a preliminary experiment in C8166-CCR5 cells, we generated five strains of 321 

replication-competent HIV-1mt carrying env from subtype C HIV-1 clinical isolates, 322 

including 97ZA012, but only three were infectious to PtM cells (data not shown). The 323 

generation of SHIV 97ZA012 that can establish infection in rhesus macaques as 324 

described previously (Fujita et al., 2013) also suggested that Env of HIV-1 97ZA012 325 

can generate recombinant viruses that are infectious to macaque cells. 326 

   The serial passage of HIV-1mt ZA012-P0 through PtM PBMCs resulted in the loss 327 

of variants with recombination breakpoints and led to the emergence of HIV-1mt 328 
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ZA012-P19 variants with shared uniform mosaic breakpoints not detected before the 329 

passage (Fig. 4). It is possible that recombination type R8 was generated through 330 

additional recombination events within homologous sequences in the vpu region 331 

between variants with recombination type R2 and R7 because recombinant breakpoints 332 

located on vpr and env regions of the virus were identical to that of R2 and R7, 333 

respectively. This possibility of recombination between R2 and R7 is also supported by 334 

the previous finding that the AAAAA tract within the putative site of recombination is a 335 

recombination hotspot during reverse transcription because the sequence facilitates 336 

template switching by pausing and dissociation of reverse transcriptase and results in 337 

frequent recombination (Quinones-Mateu et al., 2002). 338 

   HIV-1mt ZA012-P19 acquired three amino acid substitutions (K432R of Pol-RT, 339 

D232E of Pol-IN and F138S of Nef) through serial passages in PtM PBMCs, but the 340 

biological significance of these mutations remains undetermined. It has been reported 341 

previously that two amino acid substitutions (N222K and V234I) in the C-terminus of 342 

Pol-IN of NL4-3 could augment replication of HIV-1mt in cynomolgus macaque 343 

HSC-F and human MT4/CCR5 cells (Nomaguchi et al., 2013). A D232E mutation 344 
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observed in this study was positioned near these two residues, which might be 345 

associated with increased replication in primate cells. 346 

   HIV-1mt ZA012 established infection in PtMs with the peak viremia reaching 347 

1.0–2.3 × 106 copies/mL at 1.5 or 2 wpi (Fig. 7). In contrast, NL-DT5R exhibited low 348 

levels of replication in PtMs (at most 3.5 × 104 copies/mL at peak viremia) regardless of 349 

CD8+ cell-depletion, as described previously (Igarashi et al., 2007). Plasma viral RNA 350 

load at peak viremia in HSIV-vif infected newborn PtMs showed 0.5–1.0 × 105 351 

copies/mL (Thippeshappa et al., 2011). The highest peak viral level has been achieved 352 

by stHIV-1 infection of PtMs, reaching 1.0 × 105–106 copies/mL at the peak 353 

(Hatziioannou et al., 2009). Although HIV-1mt ZA012 failed to persist its replication 354 

over 10 weeks, the replication capacity of the virus in the acute phase appeared to be 355 

comparable to or greater than known monkey-tropic HIV-1 isolates. The caveat is that 356 

HIV-1mt ZA012 was obtained through “autologous” cell passage. 357 

   The derivative of NL-DT5R was designed to counteract or evade restrictions by 358 

macaque TRIM5α and APOBEC3G but not by interferon (IFN)-stimulated genes (ISGs). 359 

One of the IFNα-inducible host factors, tetherin, inhibits release of viral particles from 360 
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infected cells (Neil et al., 2008). HIV-1 Vpu is able to counteract human tetherin 361 

activity but fails to downregulate this activity in macaque (Jia et al., 2009). On the other 362 

hand, unlike HIV-1 HXB2 or NL4-3, some strains of HIV-1 appear to antagonize 363 

macaque tetherin by its N-terminal transmembrane (TM) domain of Vpu (Shingai et al., 364 

2011). It has been reported that replication of monkey-tropic HIV-1 could be controlled 365 

in macaque lymphocytes treated with IFN-α (Bitzegeio et al., 2013; Thippeshappa et al., 366 

2013). Further investigations are required to determine whether HIV-1mt ZA012-P19 367 

that encodes the N-terminal TM domain of Vpu, Env and Nef from subtype C could 368 

efficiently replicate in the presence of PtM tetherin or ISGs. 369 

   We generated the first CCR5-tropic HIV-1mt in the currently available derivatives 370 

of HIV-1 that can establish infection in macaques. NL-DT5R, HSIV-vif and stHIV-1 371 

are infectious to PtMs, but these viruses are CXCR4 or CXCR4/CCR5 dual tropic. 372 

Several monkey-tropic HIV-1 isolates carrying CCR5-tropic env have been reported, 373 

but the viral replication was less efficient than NL-DT5R (Yamashita et al., 2008). The 374 

CCR5-tropic viruses preferentially infect memory CD4+ T-lymphocytes and efficiently 375 

replicate in effector sites in vivo (i.e., lymphocytes in the lung or gastrointestinal tract) 376 
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(Brenchley et al., 2004; Mehandru et al., 2004; Okoye et al., 2007; Picker et al., 2004). 377 

Although we characterized co-receptor usage of HIV-1mt ZA012-P19 in vitro, further 378 

investigation is needed to determine whether the virus behaves similarly to CCR5-tropic 379 

HIV-1 isolates in patients in vivo. 380 

   In this study, we generated a new monkey-tropic HIV-1. The viral swarm HIV-1mt 381 

ZA012-P19 carries env sequences from CCR5-tropic subtype C HIV-1, and it 382 

successfully established infection in PtMs with a high peak viremia comparable or 383 

greater than the monkey-tropic HIV-1 strains currently available. Although the 384 

monkey-tropic HIV-1 requires further adaptation to improve its in vivo replication 385 

capacity, the virus potentially serves as a nonhuman primate model for AIDS, which 386 

reproduces infection with currently circulating HIV-1.387 
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Materials and methods 388 

Cells 389 

293 T cells (DuBridge et al., 1987) were maintained in Dulbecco’s Modified Eagle 390 

Medium (D-MEM; Wako, Osaka, Japan) supplemented with 10% (vol/vol) fetal bovine 391 

serum (FBS; HyClone Laboratories, Logan, UT) and 1 mM L-glutamine. TZM-bl cells 392 

(Platt et al., 1998) from the NIH AIDS research and reference reagent program were 393 

maintained in D-MEM supplemented with 10% FBS, 1 mM L-glutamine and 1 mM 394 

sodium pyruvate. The human T-cell line, C8166-CCR5 (Shimizu et al., 2006) was 395 

maintained in Rosewell Park Memorial Institute 1640 medium (RPMI-1640; Invitrogen, 396 

Carlsbad, CA) supplemented with 10% FBS. PtM PBMCs from uninfected monkeys 397 

were isolated using the ficoll density gradient separation method. For this procedure, a 398 

mixture of 95% lymphocyte separation medium (Wako) and 5% phosphate buffered 399 

saline (PBS) was used as a separation solution as described previously (Agy et al., 400 

1992; Frumkin et al., 1993). Residual erythrocytes were lysed in ACK lysing buffer 401 

(0.15 M NH4Cl, 1.0 M KHCO3, 0.1 mM EDTA･Na2). Depletion of CD8+ cells was 402 

conducted with the magnetic-activated cell sorting (MACS) system (Miltenyi Biotec, 403 
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Gladbach, Germany). Briefly, isolated PtM PBMCs were stained with phycoerythrin 404 

(PE)-conjugated anti-CD8 antibodies (clone SK1, BD Biosciences, San Jose, CA) and 405 

then labeled with anti-PE MicroBeads (Miltenyi Biotec). CD8+ cells were removed 406 

using a magnetic column according to the manufacturer’s instructions. PBMCs were 407 

cultured in RPMI-1640 supplemented with 10% FBS, 2 mM sodium pyruvate, 2 mM 408 

L-glutamine, 50 nM 2-mercaptoethanol and 40 µg/mL gentamicin. PBMCs were 409 

stimulated with 25 µg/mL Concanavalin A (conA) for 20 h and then cultured in the 410 

presence of 160 U/mL human recombinant interleukin-2 (IL-2; Wako).  411 

 412 

Viruses 413 

A stock of NL-DT5R virus was prepared from C8166-CCR5 cells transfected with a 414 

plasmid encoding full-length proviral DNA of NL-DT5R (pNL-DT5R) using the 415 

DEAE-Dextran/osmotic shock procedure (Takai and Ohmori, 1990). SIVmac239 416 

(Kestler et al., 1988) stock virus was prepared from the culture supernatant of 293 T 417 

cells transfected with a plasmid encoding full-length proviral DNA of SIVmac239 with 418 

Lipofectamine (Invitrogen). CCR5-tropic subtype C HIV-1 clinical isolates including 419 
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97ZA012 were obtained from the NIH AIDS research and reference reagent program. 420 

 421 

Generation of recombinant virus through intracellular homologous recombination 422 

To generate recombinant virus by IHR, overlapping viral genomic DNA fragments were 423 

prepared by PCR amplification. A region spanning the 5´ LTR to env was amplified 424 

from pNL-DT5R (GenBank accession number: AB266485) using the HIV-1-U3-NotI-F 425 

forward primer (5´-ATGCGGCCGCTGGAAGGGCTAATTTGGTCCCAAAG-3´; 426 

nucleotide positions 1–25 in NL-DT5R, and additional NotI site sequences) and the 427 

env-2R reverse primer (5´-CACAGAGTGGGGTTAATTTTACAC-3´; nucleotide 428 

positions 6761–6784 in NL-DT5R). PCR was conducted with Expand long-range 429 

dNTPack (Roche Diagnostic, Basel, Switzerland). PCR conditions were as follows: 430 

94ºC for 2 min followed by 10 cycles of 94ºC for 15 sec, 55ºC for 30 sec and 68ºC for 8 431 

min, 25 cycles of 94ºC for 15 sec, 55ºC for 30 sec, 68ºC for 8 min, with 20 sec 432 

increments at 68°C for each successive cycle and a final elongation period of 68ºC for 7 433 

min (fragment I in Fig. 1A). Amplification of a DNA fragment spanning the initiation 434 

of vpr to the 3´ LTR was derived from subtype C HIV-1 clinical isolates of the HIV-1 435 
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97ZA012 strain. Viral RNA was isolated from culture supernatant using a QIAamp 436 

viral RNA mini kit (Qiagen, Hilden, Germany). Complementary DNA (cDNA) was 437 

synthesized with Super Script III first-strand synthesis SuperMix (Invitrogen) using the 438 

OFM19-R reverse primer (5´-AGGCAAGCTTTATTGAGGCTTA-3´; nucleotide 439 

positions 9604–9625 based on the HXB2 numbering). PCR amplification of the viral 440 

cDNA was conducted using HIV-1vpr-F forward primer 441 

(5´-AGATGGAACAAGCCCCAGAAGA-3´; nucleotide positions 5558–5579 in the 442 

HXB2 numbering) and OFM19-R reverse primer with the same conditions (fragment II 443 

in Fig. 1A). To prepare a fragment spanning the initiation of 5´ LTR to the MA region 444 

of gag, proviral DNA was extracted from proviral DNA of subtype C HIV-1 445 

isolate-infected C8166-CCR5 cells using DNeasy Blood & Tissue kits (Qiagen). The 446 

following amplification was conducted using HIV-1cladeC-U3-NotI-F forward primer 447 

(5´-ATGCGGCCGCTGGAAGGGTTAATTTACTCAAGAG-3´; nucleotide positions 448 

1–24 in the HXB2 numbering plus NotI site sequences) and the PreSCA-R reverse 449 

primer (5´-AATCTATCCCATTCTGCAGC-3´; nucleotide positions 1433–1414 in the 450 

HXB2 numbering) (fragment III in Fig. 1A). The PCR products were purified using 451 
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QIAquick PCR purification kits (Qiagen). 452 

   Recombinant viruses were generated by means of IHR in the cell. PCR-amplified 453 

linear viral DNA fragments were co-transfected into C8166-CCR5 cells by the 454 

DEAE-dextran/osmotic shock procedure (Takai and Ohmori, 1990). After transfection, 455 

cells were maintained and passaged every 3 days. The culture supernatant was harvested 456 

upon observation of virus-induced CPE.  457 

 458 

Virus titration 459 

The infectious titer of the viruses was defined as the median tissue culture infectious 460 

dose (TCID50) in TZM-bl cells as described previously (Li et al., 2005). Four-fold, 461 

serially diluted viral stock was used to inoculated TZM-bl cells (5,000 cells per 200 µL 462 

of growth medium containing DEAE-Dextran at a final concentration of 12.5 µg/mL) in 463 

quadruplicate in flat-bottom 96-well plates. After incubation for 48 h at 37°C, the 464 

culture supernatant was removed and the cells were treated with 50 µl of Cell lysis 465 

solution (Toyo-Inki, Tokyo, Japan) for 15 min at room temperature with shaking. Then, 466 

30 µl of the cell lysate were transferred to F96 MicroWell plates (Thermo Fisher 467 
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Scientific, Roskilde, Denmark), and the relative luminescence units (RLU) after adding 468 

50 µl of luciferase substrate (PicaGene, Toyo-Inki) to each well was determined using a 469 

microplate reader (Mithrus LB940, Berthold Technologies, Bad Wildbad, Germany). 470 

Viral infectivity was measured in RLUs, and positive wells were defined as RLU > 2 × 471 

background. The TCID50 was calculated as described previously (Reed and Muench, 472 

1938). 473 

 474 

Viral growth kinetics in pig-tailed macaque PBMCs 475 

PtM PBMCs were isolated from two uninfected animals and CD8+ cells were depleted 476 

as described above. Two days after stimulation with Concanavarin A (25 µg/ml), 2.5 × 477 

105 cells of CD8+ cells-depleted PtM PBMCs were inoculated with 2.5 × 104 TCID50 of 478 

viral stocks by spinoculation (O'Doherty et al., 2000) at 1,200 × g for 1 h at room 479 

temperature. After washing with PBS, the infected cells in 200 µL of culture medium 480 

were cultured in round-bottom 96-well plates at 37°C. The upper 150 µl of culture 481 

supernatant without aspirating cells in the bottom of the well was exchanged with fresh 482 

medium everyday. The harvested supernatant was stored at –20°C prior to measure the 483 
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activity of RT associated with virions. 484 

 485 

RT assay 486 

The virion-associated RT activity in culture supernatant was monitored as described 487 

previously (Willey et al., 1988). Briefly, 6 µL of culture supernatant were combined 488 

with 30 µL of RT reaction cocktail [50 mM Tris-HCl, 75 mM KCl, 10 mM 489 

dithiothreitol, 4.95 mM MgCl2, 10 mg/mL polyA RNA, 5 mg/mL oligo-dT20, 0.05% 490 

NP40] and 1.66 × 104 Becquerel equivalent α32P-dTTP (PerkinElmer, Waltham, 491 

Massachusetts, USA) and incubated at 37ºC for 2 h with gentle agitation. Next, 3 µL of 492 

incubated mixture were blotted onto DE81 ion exchange cellulose paper (GE healthcare, 493 

Buckinghamshire, UK). After four washes with 2× saline sodium citrate (SSC), the 494 

residual radioactivity from synthesized DNA was counted using a liquid scintillation 495 

counter. 496 

 497 

Single genome amplification (SGA) 498 

SGA of the region spanning the initiation region of vpr to the end of the env gene was 499 
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conducted as described previously (Salazar-Gonzalez et al., 2008). Synthesized viral 500 

cDNA was endpoint diluted and then subjected to nested-PCR. First-round PCR was 501 

conducted with KOD-FX (TOYOBO, Osaka, Japan) in a total of 20 µL of reaction 502 

mixture, using the SGA-16F forward primer 503 

(5´-TGCAGCAGAGTAATCTTCCCACTACAGG-3´; nucleotide positions 5260–5283 504 

in NL-DT5R) and the SGA-OFM19R reverse primer  505 

(5´-AGGCAAGCTTTATTGAGGCTTAAGCAGTGG-3´; 9771–9800 in NL-DT5R). 506 

The first-round PCR conditions were as follows: 94°C for 2 min, followed by 35 cycles 507 

of 98°C for 10 sec, 63°C for 30 sec and 68°C for 5 min. Second-round PCR was 508 

performed using 1 µL of the first-round PCR product using the SGA-17F forward 509 

primer (5´-AGAAGAGACAATAGGAGAGGCCTTCGAATG-3´; 5610–5639 in 510 

NL-DT5R) and the SGA-2.5R reverse primer 511 

(5´-AAAGCAGCTGCTTATATGCAGCATCTGAGG-3´; 9673–9702 in NL-DT5R). 512 

The second-round PCR conditions were the same as those in the first-round PCR. 513 

Amplification of the target sequence was confirmed with agarose gel electrophoresis. 514 

According to a Poisson distribution, when a positive ratio of amplification from diluted 515 
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cDNA is < 30% in multiple replicate PCR reactions, the amplicons are predicted to be 516 

amplified from one-copy of template with the probability of > 80%. The single genome 517 

amplicons were purified before sequence analysis. 518 

 519 

Genomic analysis 520 

Sequence analysis was performed using the BigDye terminator v. 3.1 cycle sequencing 521 

kit (Applied Biosystems, Foster City, CA) and the ABI PRISM 3130xl genetic analyzer 522 

(Applied Biosystems). The 3´-terminal 2,304 nucleotide sequences of env were aligned 523 

using the Clustal X software (Thompson et al., 1997). A neighbor-joining phylogenetic 524 

tree (Saitou and Nei, 1987) using Kimura’s two-parameter model (Kimura, 1980) was 525 

constructed using MEGA 5 software (Tamura et al., 2011), and bootstrap values were 526 

computed from 1,000 bootstrap replicates (Felsenstein, 1985). Pair-wise distances 527 

between any two nucleic acid sequences of the 3´ terminal 2361 bp of each viral env 528 

within the parental HIV-1 97ZA012, HIV-1mt ZA012-P0 and HIV-1mt ZA012-P19 529 

were calculated with Kimura’s two-parameter model (Kimura, 1980) by using MEGA 5 530 

software (Tamura et al., 2011). The statistical significance between each viral pair-wise 531 
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distance was calculated with Student’s t test using GraphPad Prism (San Diego, CA, 532 

USA). 533 

 534 

Co-receptor usage assay 535 

Employing a previously reported method (Nishimura et al., 2010) with minor 536 

modifications, co-receptor usage of viruses was determined using the small molecule 537 

antagonists, AD101 (Trkola et al., 2002) provided by Dr. Julie Strizki (Schering-Plough 538 

Research Institute, Kenilworth, NJ) and AMD3100 (Sigma-Aldrich, St. Louis, MO) 539 

(Donzella et al., 1998). Briefly, freshly trypsinized TZM-bl cells (5,000 cells per 100 540 

µL of growth medium containing DEAE-Dextran at a final concentration of 12.5 541 

µg/mL) were seeded in flat-bottom 96-well plates. The cells were incubated with 50 µL 542 

of co-receptor antagonists at final concentrations ranging from 0.1 nM to 1,000 nM for 543 

1 h at 37°C and inoculated with 100 TCID50 of replication-competent virus in triplicate. 544 

After incubation for 48 h at 37°C, luciferase activity was measured, and the percent 545 

infectivity relative to that measured in mock-treated wells was determined. 546 

 547 
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Experimental infection of pig-tailed macaques with HIV-1mt ZA012 548 

HIV-1mt ZA012 challenge stock was prepared from culture supernatant of PtM PBMCs 549 

infected with HIV-1mt ZA012-P19. The virus was titrated with PtM PBMCs as 550 

described previously (Fujita et al., 2013). Two pig-tailed macaques, PtM01 and PtM02 551 

aged 7 and 6 years, respectively, were intravenously inoculated with 1.0 × 105 TCID50 552 

of HIV-1mt ZA012. Plasma viral RNA loads were measured with TaqMan real time 553 

RT-PCR as described previously (Miyake et al., 2006) with minor modifications; 554 

RT-PCR was conducted for HIV-1 vpr amplification using the NM3rNvpr-F forward 555 

primer (5´-CAGAAGACCAAGGGCCACAG-3´) and NM3rNvpr-R reverse primer 556 

(5´-GTCTAACAGCTTCACTCTTAAGTTCCTCT-3´). PCR products were detected 557 

with a labeled probe, NM3rNvpr-T (5´-Fam- 558 

AGGGAGCCATACAATGAATGGACACT-Tamra-3´; Perkin Elmer). Animal 559 

experiments were conducted in the biosafety level 3 animal facility, in compliance with 560 

institutional regulations approved by the Committee for Experimental Use of 561 

Nonhuman Primates of the Institute for Virus Research, Kyoto University, Kyoto, 562 

Japan. 563 
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 564 

Flow cytometry 565 

To enumerate CD4+ T-lymphocytes, and memory and naïve CD4+ T-lymphocytes, 566 

whole blood samples were stained with fluorescently labeled mouse monoclonal 567 

antibodies. Anti-CD3 (clone SP34-2) conjugated with Pacific Blue, anti-CD4 (clone 568 

L200) conjugated with PerCP-Cy5.5, anti-CD8 (clone SK1) conjugated with APC-Cy7, 569 

anti-CD20 (clone L27) conjugated with FITC and anti-CD95 (clone DX2) conjugated 570 

with APC were purchased from BD Biosciences, and anti-CD28 (clone CD28.2) 571 

conjugated with PE was purchased from eBioscience (San Diego, CA). 572 

CD28highCD95lowCD4+ or CD28high/lowCD95highCD4+ T-cell subsets were considered as 573 

naïve or memory CD4+ T-lymphocytes, respectively (Pitcher et al., 2002). The absolute 574 

number of lymphocytes in the blood was determined using an automated hematology 575 

analyzer, KX-21 (Sysmex, Kobe, Japan). 576 

577 
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Figure Legends  932 

Fig 1. Schematic representation of the genome organization of human 933 

immunodeficiency virus (HIV)-1 and monkey-tropic HIV-1 (HIV-1mt). Genome 934 

organizations of NL-DT5R (A), subtype C HIV-1 97Z012 (B) and HIV-1mt ZA012-P0 935 

(C) are depicted. The horizontal line represents DNA fragments I, II and III, used for 936 

intracellular homologous recombination. Fragment I encodes a region from the 5´ LTR 937 

to env of NL-DT5R plasmid DNA. Fragment II encodes a region from the initiation of 938 

vpr to the R region of the 3´ LTR of the HIV-1 97ZA012 strain. Fragment III encodes a 939 

region from the 5´ LTR to upstream of the cyclophilin A-binding motif of the virus. 940 

Sequences from NL4-3 (open box), HIV-1 97ZA012 (filled box) and the SIVmac239 941 

genome (diagonally striped box) are depicted. The gray box in HIV-1mt ZA012-P0 942 

represents a gene that was not identified by direct sequence analysis. 943 

 944 

Fig 2. Improved replication of HIV-1mt ZA012 throughout in vitro passages in 945 

CD8+ cell-depleted PtM peripheral blood mononuclear cells (PBMCs). 946 

HIV-1mt ZA012-P0 was used to spinoculate CD8+ cell-depleted PtM PBMCs, and 947 

virion-associated RT activity in the culture supernatant was monitored daily. Some of 948 
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the infected cells were co-cultured with freshly prepared CD8+ cell-depleted PtM 949 

PBMCs. One period of passage was indicated in the shaded grey or white zones. The 950 

dotted line indicates data not available.  951 

 952 

Fig 3. Growth kinetics of HIV-1mt ZA012 in CD8+ cell-depleted depleted PtM 953 

PBMCs. Growth kinetics of HIV-1mt ZA012-P0, HIV-1mt ZA012-P19, SIVmac239 954 

and NL-DT5R were compared in PBMCs from two PtMs. Each virus was used to 955 

spinoculate CD8+ cell-depleted PtM PBMCs (MOI = 0.1 TCID50 per cell), and the 956 

virion-associated RT activity in the culture supernatant was monitored. The figure 957 

shown is representative of four independent experiments. 958 

 959 

Fig 4. Recombination breakpoints in HIV-1mt ZA012-P0 and ZA012-P19 genomes. 960 

The genome organizations of HIV-1mt ZA012-P0 and HIV-1mt ZA012-P19 are 961 

schematically represented (upper two diagrams). The region from the initiation of vpr to 962 

the end of env that included recombination breakpoint sites is depicted in the third 963 

diagram; the HIV-1mt ZA012-P0 (17 SGA sequences) or HIV-1mt ZA012-P19 (seven 964 
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SGA sequences) are depicted (bottom). Sequences from HIV-1mt ZA012-P0 were 965 

classified into seven patterns of recombination breakpoints (R1 to R7). Sequences from 966 

HIV-1mt ZA012-P19 were classified into one recombination breakpoint pattern (R8). 967 

The numbers (left) indicate the numbers of sequences per analyzed sequence.  968 

 969 

Fig 5. Phylogenic analysis of partial env sequences. A neighbor-joining phylogenic 970 

tree was constructed from the partial nucleic acid sequences of env (nucleotide positions 971 

211–2571 based on env of HXB2 numbering). The sequences of HIV-1 97ZA012 972 

(white circle), HIV-1mt ZA012-P0 (grey circle) and HIV-1mt ZA012-P19 (black circle) 973 

were determined from SGA sequences. HIV-1 97ZA012 (accession number: 974 

AF286227) and 98CN007 (AF286230) reference sequences were obtained from the Los 975 

Alamos HIV sequence database (http://hiv-web.lanl.gov/). R1–R8 correspond to the 976 

patterns of recombination breakpoint types in Figure 2. Bootstrap values were computed 977 

from 1,000 bootstrap replicates, and only > 90% are shown at branches. The scale bar 978 

indicates the substitutions per site. 979 

 980 
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Fig 6. Co-receptor usage of HIV-1mt ZA012-P19. Infectivity of HIV-1 NL4-3, 981 

SIVmac239 and HIV-1mt ZA012-P19 to TZM-bl cells was assessed in the presence of 982 

increasing amounts of AMD3100 (CXCR4 inhibitor), AD101 (CCR5 inhibitor) or both. 983 

The experiment was conducted in triplicate.  984 

 985 

Fig 7. HIV-1mt ZA012 infection of pig-tailed macaques. Two pig-tailed macaques 986 

were inoculated intravenously with HIV-1mt ZA012 (100,000 TCID50), and the plasma 987 

viral RNA burdens (A) and circulating CD4+ T-lymphocytes (B) were monitored. 988 
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