Kyoto University Research Information Repository	
Title	Generation of a monkey-tropic human immunodeficiency virus type 1 carrying env from a CCR5-tropic subtype C clinical isolate
Author(s)	Otsuki, Hiroyuki; Yoneda, Mai; Igarashi, Tatsuhiko; Miura, Tomoyuki
Citation	Virology (2014), 460-461: 1-10
Issue Date	2014-07
URL	http://hdl.handle.net/2433/188915
Right	© 2014 Elsevier Ltd.
Туре	Journal Article
Textversion	author

Ι	Generation of a monkey-tropic human immunodeficiency virus type 1 carrying <i>env</i>
2	from a CCR5-tropic subtype C clinical isolate
3	
4	Hiroyuki Otsuki, Mai Yoneda, Tatsuhiko Igarashi, Tomoyuki Miura*
5	
6	Laboratory of Primate Model, Experimental Research Center for Infectious Diseases,
7	Institute for Virus Research, Kyoto University, 53 Shogoin Kawara-cho, Sakyo-ku,
8	Kyoto, 606-8507, Japan.
9	
IO	* Corresponding author: Institute for Virus Research, Kyoto University, 53 Shogoin
II	Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
12	Phone: 81-75-751-3984, Fax: 81 75 761 9335.
13	E-mail addresses: tmiura@virus.kyoto-u.ac.jp
14	Abstract, 149 words; Main text, 6202 words; Figure legends, 568 words

15 Abstract

Several derivatives of human immunodeficiency virus type 1 (HIV-1) that evade 16 macaque restriction factors and establish infection in pig-tailed macaques (PtMs) have 17 been described. These monkey-tropic HIV-1s utilize CXCR4 as a co-receptor that 18 differs from CCR5 used by most currently circulating HIV-1 strains. We generated a 19 new monkey-tropic HIV-1 carrying env from a CCR5-tropic subtype C HIV-1 clinical 20 isolate. Using intracellular homologous recombination, we generated an uncloned 2I chimeric virus consisting of at least seven types of recombination breakpoints in the 22 region between vpr and env. The virus increased its replication capacity while 23 maintaining CCR5 tropism after in vitro passage in PtM primary lymphocytes. PtM 24 infection with the adapted virus exhibited high peak viremia levels in plasma while the 25 virus was undetectable at 12-16 weeks. This virus serves as starting point for 26 generating a pathogenic monkey-tropic HIV-1 with CCR5-tropic subtype C env, 27 perhaps through serial passage in macaques. 28

29

30 Keywords:

- 31 Monkey-tropic HIV-1
- 32 Pig-tailed macaque

- 33 Intracellular homologous recombination
- 34 Primary isolate
- 35 Subtype C
- 36 CCR5 tropism
- 37 In vitro passage
- 38 Animal model
- 39 AIDS
- 40 Restriction factor

4I

41 Introduction

Nonhuman primate models with human-like immune systems are often employed to 42 evaluate the efficacy of candidate vaccines against acquired immune deficiency 43 syndrome (AIDS). However, human immunodeficiency virus type 1 (HIV-1) infects 44 humans or chimpanzees (Pan troglodytes) but not rhesus macaques (Macaca mulatta), 45 the most widely used primate species in biomedical research (Gibbs et al., 2007). 46 Experimental infection of macaques with simian immunodeficiency virus (SIV) or 47 simian-human immunodeficiency virus (SHIV) has been used extensively to investigate 48 HIV-1 infection in vivo. Pathogenic infection with SIV allows insight into the 49 mechanisms of pathogenesis and provides information for development of novel 50 vaccination strategies. However, due to the marked antigenic difference in viral proteins 5I between HIV-1 and SIV, macaque models with SIV are not suitable for evaluating the 52 immune response directed against HIV-1 (Javaherian et al., 1992; Kanki et al., 1985; 53 Murphey-Corb et al., 1986). SHIV, a chimeric virus carrying tat, rev, vpu and env from 54 HIV-1 with an SIV genetic backbone, has been constructed and used widely to assess 55 the immune response and pathogenicity directed against HIV-1 Env (Shibata and 56

57 Adachi, 1992; Reimann, et al., 1996; Harouse, et al., 1999)

58	Highly pathogenic SHIV irreversibly depletes circulating CD4 ⁺ T-lymphocytes,
59	and cause rapidly AIDS-like symptoms in infected macaques. These properties are,
60	however, different from the vast majority of circulating HIV-1 or SIV isolates, and the
61	discrepancy would be attributed to the viral co-receptor preference (Nishimura et al.,
62	2004). Entry of HIV-1 into cells is mediated through the interaction of viral envelope
63	protein with cellular CD4 and subsequent binding to either the CCR5 or CXCR4
64	chemokine receptor or both receptors. The vast majority of HIV-1 clinical isolates
65	preferentially utilize CCR5 as the co-receptor for entry (Choe et al., 1996). The
66	CXCR4-tropic or dual-tropic viruses that utilize both CCR5 and CXCR4 emerge during
67	late stages in the disease course (Doranz et al., 1996; Feng et al., 1996).
68	In addition to the co-receptor usage, it is necessary to consider the variation of env
69	gene in SHIV construction. Most HIV-1 strains currently circulating belong to group M,
70	consisting of subtypes A-D, F-H, J, K and their recombinants, and are largely
71	responsible for the global AIDS pandemic (Hemelaar, 2012). Most of early SHIVs are
72	generated by utilizing genes derived from subtype B viruses, which comprise an

73	estimated 11% of the global prevalence of HIV-1. By contrast, subtype C is the
74	dominant subtype, accounting for almost 50% of global infections. Subtype C viruses
75	do not share the antigenicity of Env as the main target of neutralizing antibodies with
76	subtype B viruses (Choisy et al., 2004; Gaschen et al., 2002). The V3 loop region of the
77	subtype C envelope is less variable than that of other subtypes (Kuiken et al., 1999), and
78	mutations appear to accumulate in the C3 and V4 regions, which are targets of
79	autologous neutralizing antibody responses in individuals infected with subtype C
80	viruses (Moore et al., 2008; Moore et al., 2009). The structure of these epitopes is
81	dissimilar between subtypes B and C (Gnanakaran et al., 2007). There are pathogenic
82	SHIVs that encode CCR5 tropic subtype C env gene (Ndung'u et al., 2001; Ren et al.,
83	2013; Song et al., 2006).
84	Conventional SHIV that encodes SIV sequence in 5' half of the genome has
85	limited utility in the evaluation of cell-mediated immunity induced by a vaccine because
86	it does not contain HIV-1 Gag in its genome; consequently, SHIV has different major
87	epitopes for cytotoxic T lymphocytes (CTLs) known to be associated with lowering the

88 plasma viral load in HIV-1 infection (Goulder and Watkins, 2004; Kiepiela et al., 2007).

89	Recently, two major restriction factors were reported to block HIV-1 replication in
90	monkey cells in a species-specific manner (Neil and Bieniasz, 2009). The restriction
91	factor apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G
92	(APOBEC3G) protein is incorporated into viral particles and induces hypermutation in
93	proviral DNA in target cells mediated by its cytidine deaminase activity (Sheehy et al.,
94	2002). Macaque APOBEC3G proteins are counteracted by the SIV Vif protein but not
95	by HIV-1 Vif (Mariani et al., 2003). The other major restriction factor that inhibits the
96	viral replication cycle is tripartite motif 5α (TRIM5 α) protein, which directly recognizes
97	incoming viral capsid (CA) (Stremlau et al., 2004). HIV-1 CA can bind cyclophilin A
98	(CypA), a ubiquitous cytosolic protein, to evade restriction by human TRIM5a, whereas
99	the CypA-binding activity appears to enhance TRIM5 α recognition in macaque cells
100	(Berthoux et al., 2005; Keckesova et al., 2006; Stremlau et al., 2006). It is known that
IOI	the host species barrier of Pig-tailed macaques (PtMs) (Macaca nemestrina) against
102	HIV-1 is weaker than other macaques because they do not have the TRIM restriction
103	(Brennan et al., 2008).

Based on these findings, derivatives of HIV-1 that has a remarkably different

105	structure from the conventional SHIV were constructed by the introduction of minor
106	genetic modifications into its genome to overcome the restriction factors in macaque
107	cells. Hatziioannou et al. (2006) generated simian-tropic HIV-1 (stHIV-1) by replacing
108	the entire vif gene of HIV-1 with that of SIVmac or HIV type 2. Kamada et al. (2006)
109	reported the monkey-tropic HIV-1 (HIV-1mt) NL-DT5R, in which the CypA-binding
IIO	motif of the CA protein is substituted by the corresponding sequence of SIVmac, and
III	the entire vif gene is also substituted. Thippeshappa et al. (2011) generated HSIV-vif, a
II2	clone of HIV-1 by substituting the vif gene with that of a pathogenic SIVmne clone.
113	These derivatives of HIV-1 established persistent infection in PtMs for months but were
II4	controlled thereafter (Hatziioannou et al., 2009; Igarashi et al., 2007; Thippeshappa et
115	al., 2011). These monkey-tropic HIV-1 derivatives currently available are not
116	CCR5-tropic; NL-DT5R and HSIV-Vif encode env from a CXCR4-tropic, and stHIV-1
117	encodes env from dual-tropic subtype B viruses.
118	In this study, we generated a new HIV-1mt strain carrying env from a CCR5-tropic
119	subtype C HIV-1 clinical isolate. We employed intracellular homologous recombination

120 (IHR) to produce the recombinant virus. Since the viral swarm generated by IHR did

121	not show efficient replication in PtM primary cells, we conducted in vitro serial
I22	passages of the virus. Thus, we successfully generated a viral swarm that exhibited an
123	enhanced replication capacity in PtM cells and established infection in PtMs with high
124	peak viremia comparable to the currently available monkey-tropic HIV-1 derivatives.
105	

125 Results

Generation of a new HIV-1mt carrying CCR5-tropic subtype C Env through IHR 126 We employed IHR to generate recombinant viruses (Fujita et al., 2013). First, we 127 prepared DNA fragments by polymerase chain reaction (PCR) amplification of a region 128 spanning the 5' long terminal repeat (LTR) to upstream of the V1/V2 region in env 129 (nucleotide positions 1–6784 based on HXB2 numbering; accession number: K03455) 130 using the plasmid DNA template encoding the full-length NL-DT5R proviral genome 131 (fragment I in Fig. 1A). This fragment encodes a CypA-binding motif derived from the 132 corresponding sequence of SIVmac239 to evade restriction from macaque TRIM5a, and 133 the entire SIVmac239 vif gene to counteract the macaque APOBEC3G. Second, a 134 region spanning the vpr gene to the R region of the 3' LTR (nucleotide positions 135 5558-9625 based on HXB2 numbering) was amplified from the HIV-1 97ZA012 strain 136 (fragment II in Fig. 1B). To increase the possibility to obtain a virus that can replicate in 137 monkeys well, we thought that it was better to generate swarm viruses having variation 138 without cloning. Resultant recombinant virus might fail to replicate normally if 139 recombination occurred between fragments I and II that resulted in the 5' LTR of I40

I4I	subtype B and the 3' LTR of subtype C. The discordance of the 3' and 5' LTR may
142	disrupt successful translocation of the minus strand strong stop DNA to the plus strand
143	genomic RNA during reverse transcription (Goff, 2007). To match the sequence of the
I44	3' LTR to that of the 5' LTR, we prepared a third DNA fragment encoding a region
I45	spanning the 5' LTR to the middle of gag (nucleotide positions 1–1433 based on HXB2
146	numbering) from the proviral DNA extracted from HIV-1 97ZA012-infected cells
I47	(fragment III in Fig. 1B). Fragments I and II had an overlapping region between the
148	initiation of vpr to upstream of the env V1/V2 region, and fragments I and III had an
149	overlapping region between the 5' LTR to upstream of the CypA-binding site.
150	These amplified DNA fragments (fragments I, II and III) were co-transfected into
151	C8166-CCR5 cells that are permissive to CCR5-tropic HIV-1. On day 8
152	post-transfection, we observed the formation of virus-induced cytopathic effects (CPEs),
153	indicating the generation of replication-competent recombinant virus. The new
154	recombinant virus was isolated and designated HIV-1mt ZA012-P0.
155	To determine the genomic organization of HIV-1mt ZA012-P0, we subjected the
156	viral RNA isolated from the culture supernatant to direct sequencing. We found that the

157	virus carried sequences of the U5 region of the 5' LTR, gag, pol and vif derived from
158	NL-DT5R and sequences of 3' half of <i>env</i> , <i>nef</i> , and R and the U3 region of the 3' LTR
159	derived from 97ZA012 (Fig. 1C). First, the recombination breakpoint derived from
160	fragments I and III was found to be located within the junction between the U5 and R
161	region of the 5' LTR (nucleotide positions 551-605 based on HXB2 numbering).
162	However, additional recombination breakpoints between fragments I and II, encoding
163	the vpr-env region, were not identified due to multiple peaks at the same locations in the
164	analyzed sequence chromatograms. This result suggested that HIV-1mt ZA012-P0
165	represented a swarm that might contain several variants with various recombination
166	breakpoints.
167	
168	Increased replication competence of HIV-1mt ZA012 through long-term in vitro
169	passage in CD8 ⁺ cell-depleted pig-tailed macaque peripheral blood mononuclear
170	cells (PBMCs).
171	We subsequently determined whether HIV-1mt ZA012-P0 replicates in CD8 ⁺

cell-depleted pig-tailed macaque peripheral blood mononuclear cells (PtM PBMCs), in

173	which the parental NL-DT5R replicated as described previously (Kamada et al., 2006).
174	HIV-1mt ZA012-P0 from the culture supernatant of C8166-CCR5 was used to
175	spinoculate CD8 ⁺ cell-depleted PtM PBMCs, and the virion-associated reverse
176	transcriptase (RT) activity was monitored in the culture supernatant (Fig. 2); however,
177	no RT activity was detected in the culture supernatant after passage 1 (Fig. 2).
178	Next we carried out in vitro serial passages to improve the replication competence
179	of the virus as observed in the cases of HIV-1 (Freed and Martin, 1996; Willey et al.,
180	1988). Infected cells were co-cultured with freshly prepared CD8^+ cell-depleted PtM
181	PBMCs every 1 or 2 weeks. Although detectable RT activity was not observed during
182	10 successive passages (passage 1-10), a low level of viral replication was confirmed
183	by the CPEs of C8166-CCR5 cells co-cultured with PBMCs taken from the passage
184	(data not shown). A detectable peak of viral replication (319 cpm/ μ L) was observed at
185	115 days after the first inoculation (passage 11), and replication was maintained
186	following passages, eventually resulting in enhanced replication in PtM PBMCs
187	(1900 cpm/ μ L in passage 19). The resultant virus, isolated from the culture supernatant
188	of passage 19, was designated HIV-1mt ZA012-P19.

189	To evaluate the replication capacity of the virus, the replication kinetics of HIV-1mt
190	ZA012-P19 were compared to those of the parental NL-DT5R and HIV-1mt ZA012-P0.
191	Each viral stock was normalized by the number of infectious units per cell (in this case,
192	a multiplicity of infection (MOI) of 0.1) and used to inoculate CD8^+ cell-depleted PtM
193	PBMCs isolated from two donor monkeys; virion-associated RT activity in the culture
194	supernatant was monitored daily (Fig. 3). Although HIV-1mt ZA012-P19 exhibited a
195	lower level of viral replication compared to that of SIVmac239, the virus showed more
196	efficient replication than NL-DT5R and HIV-1mt ZA012-P0 in cells from both animals.
197	Therefore, we successfully improved the replication capacity of the new HIV-1mt in
198	PtM PBMCs by in vitro passaging.
199	
200	Sequence analysis of HIV-1mt ZA012-P0 and ZA012-P19
201	It is likely that HIV-1mt ZA012-P0 acquired genetic changes and evolved to HIV-1mt
202	ZA012-P19 through the serial passages in PtM PBMCs. To compare the genomic
203	sequence of these viruses, we first performed single genome amplification (SGA) of
204	viral RNA isolated from the culture supernatant to determine the nucleic acid sequences

205	of the vpr-env region (nucleotide positions 5559-8795 based on HXB2) of
206	HIV-1mt ZA012-P0. Subsequently, we identified the sequence of the region containing
207	the expected recombination breakpoints generated by IHR between fragments I and II.
208	Genetic analysis of 17 SGA clones revealed that these sequences had NL-DT5R
209	sequences in the 5' end and HIV-1 97ZA012 sequences in the 3' end, with seven
210	different recombination breakpoints in the region (Fig. 4). One recombination
211	breakpoint was detected at nucleotide positions 178–187 of the vpr gene in 1/17 SGA
212	sequences (5736-5745 in HXB2 numbering, recombination type R1) with 10 identical
213	base pairs between NL-DT5R and 97ZA012. In addition to R1, we identified the
214	following recombination types: the vpr gene in 3/17 SGA sequences (5760–5767; R2),
215	the initiation of <i>tat</i> in $2/17$ SGA sequences, (5821–5839; R3), the end of the <i>vpr</i> gene in
216	1/17 SGA sequence (5852-5865; R4), the initiation of rev in 6/17 SGA sequences
217	(5960–6000; R5), the end of the vpu gene in 1/17 SGA sequence (6357–6392; R6) and
218	the upstream of V1/V2 of the env gene in 3/17 SGA sequences (6467–6491; R7). These
219	results suggest that homologous recombination occurs in various sites with homologous
220	sequences.

22I	Next, seven SGA sequences were amplified from viral RNA isolated from the
222	culture supernatant of PtM PBMCs infected with HIV-1mt ZA012-P19, and nucleotide
223	sequences and recombination breakpoints were determined in the same manner.
224	Unexpectedly, all the sequences of HIV-1mt ZA012-P19 had three recombination
225	breakpoints in the region from the vpr to env genes (recombination type R8 in Fig. 4).
226	The first breakpoint was located in the vpr gene (5760–5767), the second was located in
227	the vpu gene (6194-6213), and the third was located in env (6467-6491) with the
228	N-terminal portion of C1 region from NL4-3 sequence. Although the pattern of
229	recombination breakpoint of the virus differed from those of HIV-1mt ZA012-P0, the
230	first and third recombination breakpoints were identical to the recombination type of R2
231	and R7, respectively (Fig. 4). It is likely that HIV-1mt ZA012-P19 was generated from
232	further recombination events that occurred in the middle of the vpu gene (6194–6213)
233	between recombination type R2 and R7 of HIV-1mt ZA012-P0.
234	It is conceivable that the genome of HIV-1mt ZA012-P19 acquired several amino
235	acid mutations associated with the enhanced replication in PtM PBMCs. Compared with
236	the deduced amino acid sequences in HIV-1mt ZA012-P0, HIV-1mt ZA012-P19

237	acquired substitutions from Lys to Arg at amino acid position 432 in Pol-RT and Asp to
238	Glu at position 232 in Pol-IN that were in the NL-DT5R backbone. In addition, an
239	amino acid substitution from Phe to Ser at 139 in Nef was found in
240	HIV-1mt ZA012-P19 compared to 17 SGA sequences derived from HIV-1mt
24I	ZA012-P0. No nonsynonymous substitutions were identified in Gag and Vif, the
242	proteins responsible for evading TRIM5 α and APOBEC3. Around the recombination
243	break points in HIV-1mt ZA012-P19, the vpr and vpu genes keep each open reading
244	frame and do not contain any mutations in the region derived from NL-DT5R,
245	respectively. Furthermore, consensus amino acid sequence of P0 and P19 were also
246	identical in the regions derived from HIV-1 97ZA012, respectively. These facts suggest
247	that recombination was occurred to keep these genes intact.
248	

249 Phylogenetic analysis of *env* genes

It is likely that HIV-1mt ZA012-P0 generated by IHR in human C8166-CCR5 cells was
a swarm carrying diverse *env* sequences of the parental HIV-1 97ZA012, which evolved
to HIV-1mt ZA012-P19 through *in vitro* passages. To evaluate the *env* variants selected

253	in C8166-CCR5 cells or primary PtM cells, we determined 22 sequences of HIV-1
254	97ZA012, 17 sequences of HIV-1mt ZA012-P0 and seven sequences of HIV-1mt
255	ZA012-P19 from SGA. Next, we conducted a phylogenetic analysis of the nucleotide
256	sequences of the 3' terminal 2361 bp of each viral env derived from HIV-1 97ZA012
257	and shared by all variants of HIV-1mt ZA012-P0 and -P19 (Fig. 5). These sequences
258	were divided into two clusters: the larger cluster included 19 sequences of HIV-1
259	97ZA012, 8 sequences of HIV-1mt ZA012-P0 and 7 sequences of HIV-1mt
260	ZA012-P19; and the smaller cluster included 3 sequences of HIV-1 97ZA012 and 9
261	sequences of HIV-1mt ZA012-P0. Recombination types R2, R3, R5 and R7 (Figure 4)
262	were intermingled among the sequences of the two groups, suggesting that homologous
263	recombination could occur in various env templates.
264	To compare the genetic diversity of <i>env</i> in these viruses, we computed the mean of
265	all pair-wise distances between any two viral env sequences in each of the viruses. The

computed diversity of env in HIV-1mt ZA012-P0 was 0.0038 ± 0.0025 (± standard 266 deviation, SD), which was significantly lower than that in the parental HIV-1 97ZA012

267

(0.0044 \pm 0.0021; p < 0.05). The computed diversity of HIV-1mt ZA012-P19 env was 268

269 0.0012 ± 0.00078 , which showed significantly lower variation compared to HIV-1mt 270 ZA012-P0 (p < 0.0001).

27I

272 Co-receptor usage of HIV-1mt ZA012-P19

To characterize co-receptor usage of HIV-1mt ZA012-P19 after long-term in vitro 273 passage, we conducted an entry assay using TZM-bl cells with small molecule 274 antagonists (Fig. 6). Viral infectivity of the CXCR4-tropic virus (NL4-3) was reduced 275 in the presence of an increasing amount of the CXCR4 inhibitor, AMD3100, but was 276 not affected by the CCR5 inhibitor, AD101. In contrast, the CCR5-tropic virus, 277 278 SIVmac239, was inhibited in the presence of an increasing amount of AD101 but not by AMD3100. Similar to the results using SIVmac239, HIV-1mt ZA012-P19 exhibited 279 sensitivity to inhibition by AD101 but resistance to AMD3100, indicating that the virus 280 281 maintained its CCR5-tropism after the serial passage.

282

283 Replication of HIV-1mt ZA012 in pig-tailed macaques

284 Since HIV-1mt ZA012-P19 utilized CCR5 as a co-receptor and exhibited increased

285	infectivity to primary cells of PtMs, we next assessed the <i>in vivo</i> replication capacity of
286	the virus by experimental infection of PtMs. Two PtMs were inoculated intravenously
287	with 1.0×10^5 TCID ₅₀ of the HIV-1mt prepared in PtM PBMCs, and plasma viral RNA
288	burdens and the numbers of circulating CD4 ⁺ T-lymphocytes were monitored
289	periodically (Fig. 7A). Plasma viral RNA loads in PtM01 peaked $(1.0 \times 10^6 \text{ copies/mL})$
290	at 2 week post-infection (wpi) and declined thereafter to levels below the detection limit
291	at 8 wpi. PtM02 exhibited a peak plasma viral RNA burden (2.3×10^6 copies/mL) at 1.5
292	wpi and maintained more than 1×10^4 copies/mL by 9 wpi, but the viral load declined
293	to levels below the detection limit at 16 wpi. The numbers of CD4 ⁺ T-lymphocytes in
294	the circulation in both animals were not affected (Fig. 7B). Furthermore, we analyzed
295	naive and memory populations of CD4+ T cells and no preferential depletion of
296	circulating memory CD4+ T-lymphocyte was observed (data not shown).

297 Discussion

In this study, we used IHR to generate a new HIV-1mt carrying env from the 298 CCR5-tropic subtype C HIV-1 clinical isolate. This recombination method has been 299 used to generate infectious HIV-1 or SHIV by joining two linear DNAs in regions with 300 completely identical sequences (Chen et al., 2000; Kalyanaraman et al., 1988; Kellam 30I and Larder, 1994; Luciw et al., 1995; Srinivasan et al., 1989; Velpandi et al., 1991). 302 Recently, we applied IHR to generate a replication-competent SHIV carrying subtype C 303 env that was inserted within the env sequence of subtype B (Fujita et al., 2013). Here, 304 we utilized the same method to generate HIV-1mt by replacing a coding sequence 305 306 region from subtype B with that of a primary isolate of subtype C and investigated recombination breakpoints in detail by analyzing the sequences of the resultant viruses. 307 We found seven variants with different recombination breakpoints that were located 308 within overlapped sequences between fragments I and II. These variants were selected 309 as replication-competent virus in C8166-CCR5 cells that maintained their variability, 310 suggesting that IHR events occur frequently in cells co-transfected with DNA fragments. 3II In addition, it appears that the length of identical sequence of as short as 8 bp is 312

sufficient for IHR (recombination type R2 in Fig. 4). Furthermore, IHR is suggested to
occur between various DNA templates, based on the phylogenetic analysis results that
indicated intermingled types of recombination breakpoints among different *env*sequences.

To develop a virus that efficiently infects monkey cells, it is important to choose an 317 env that mediates efficient entry to macaque cells. The Env proteins in most A-D 318 subtypes of HIV-1 clinical isolates from infected individuals during the acute phase of 319 infection do not mediate efficient entry using macaque CD4 receptors (Humes et al., 320 2012). In a preliminary experiment in C8166-CCR5 cells, we generated five strains of 32I replication-competent HIV-1mt carrying env from subtype C HIV-1 clinical isolates, 322 including 97ZA012, but only three were infectious to PtM cells (data not shown). The 323 generation of SHIV 97ZA012 that can establish infection in rhesus macaques as 324 described previously (Fujita et al., 2013) also suggested that Env of HIV-1 97ZA012 325 can generate recombinant viruses that are infectious to macaque cells. 326

The serial passage of HIV-1mt ZA012-P0 through PtM PBMCs resulted in the loss of variants with recombination breakpoints and led to the emergence of HIV-1mt

329	ZA012-P19 variants with shared uniform mosaic breakpoints not detected before the
330	passage (Fig. 4). It is possible that recombination type R8 was generated through
33I	additional recombination events within homologous sequences in the vpu region
332	between variants with recombination type R2 and R7 because recombinant breakpoints
333	located on vpr and env regions of the virus were identical to that of R2 and R7,
334	respectively. This possibility of recombination between R2 and R7 is also supported by
335	the previous finding that the AAAAA tract within the putative site of recombination is a
336	recombination hotspot during reverse transcription because the sequence facilitates
337	template switching by pausing and dissociation of reverse transcriptase and results in
338	frequent recombination (Quinones-Mateu et al., 2002).
339	HIV-1mt ZA012-P19 acquired three amino acid substitutions (K432R of Pol-RT,
340	D232E of Pol-IN and F138S of Nef) through serial passages in PtM PBMCs, but the
34I	biological significance of these mutations remains undetermined. It has been reported
342	previously that two amino acid substitutions (N222K and V234I) in the C-terminus of
343	Pol-IN of NL4-3 could augment replication of HIV-1mt in cynomolgus macaque
344	HSC-F and human MT4/CCR5 cells (Nomaguchi et al., 2013). A D232E mutation

observed in this study was positioned near these two residues, which might beassociated with increased replication in primate cells.

347	HIV-1mt ZA012 established infection in PtMs with the peak viremia reaching
348	$1.0-2.3 \times 10^6$ copies/mL at 1.5 or 2 wpi (Fig. 7). In contrast, NL-DT5R exhibited low
349	levels of replication in PtMs (at most 3.5×10^4 copies/mL at peak viremia) regardless of
350	CD8 ⁺ cell-depletion, as described previously (Igarashi et al., 2007). Plasma viral RNA
35I	load at peak viremia in HSIV-vif infected newborn PtMs showed 0.5–1.0 \times 10 ⁵
352	copies/mL (Thippeshappa et al., 2011). The highest peak viral level has been achieved
353	by stHIV-1 infection of PtMs, reaching $1.0 \times 10^5 - 10^6$ copies/mL at the peak
354	(Hatziioannou et al., 2009). Although HIV-1mt ZA012 failed to persist its replication
355	over 10 weeks, the replication capacity of the virus in the acute phase appeared to be
356	comparable to or greater than known monkey-tropic HIV-1 isolates. The caveat is that
357	HIV-1mt ZA012 was obtained through "autologous" cell passage.

358 The derivative of NL-DT5R was designed to counteract or evade restrictions by 359 macaque TRIM5 α and APOBEC3G but not by interferon (IFN)-stimulated genes (ISGs). 360 One of the IFN α -inducible host factors, tetherin, inhibits release of viral particles from

361	infected cells (Neil et al., 2008). HIV-1 Vpu is able to counteract human tetherin
362	activity but fails to downregulate this activity in macaque (Jia et al., 2009). On the other
363	hand, unlike HIV-1 HXB2 or NL4-3, some strains of HIV-1 appear to antagonize
364	macaque tetherin by its N-terminal transmembrane (TM) domain of Vpu (Shingai et al.,
365	2011). It has been reported that replication of monkey-tropic HIV-1 could be controlled
366	in macaque lymphocytes treated with IFN- α (Bitzegeio et al., 2013; Thippeshappa et al.,
367	2013). Further investigations are required to determine whether HIV-1mt ZA012-P19
368	that encodes the N-terminal TM domain of Vpu, Env and Nef from subtype C could
369	efficiently replicate in the presence of PtM tetherin or ISGs.
370	We generated the first CCR5-tropic HIV-1mt in the currently available derivatives
371	of HIV-1 that can establish infection in macaques. NL-DT5R, HSIV-vif and stHIV-1
372	are infectious to PtMs, but these viruses are CXCR4 or CXCR4/CCR5 dual tropic.
373	Several monkey-tropic HIV-1 isolates carrying CCR5-tropic env have been reported,
374	but the viral replication was less efficient than NL-DT5R (Yamashita et al., 2008). The
375	CCR5-tropic viruses preferentially infect memory CD4 ⁺ T-lymphocytes and efficiently
376	replicate in effector sites in vivo (i.e., lymphocytes in the lung or gastrointestinal tract)

377	(Brenchley et al., 2004; Mehandru et al., 2004; Okoye et al., 2007; Picker et al., 2004).
378	Although we characterized co-receptor usage of HIV-1mt ZA012-P19 in vitro, further
379	investigation is needed to determine whether the virus behaves similarly to CCR5-tropic
380	HIV-1 isolates in patients in vivo.
381	In this study, we generated a new monkey-tropic HIV-1. The viral swarm HIV-1mt
382	ZA012-P19 carries env sequences from CCR5-tropic subtype C HIV-1, and it
383	successfully established infection in PtMs with a high peak viremia comparable or
384	greater than the monkey-tropic HIV-1 strains currently available. Although the
385	monkey-tropic HIV-1 requires further adaptation to improve its in vivo replication
386	capacity, the virus potentially serves as a nonhuman primate model for AIDS, which
387	reproduces infection with currently circulating HIV-1.

388 Materials and methods

389 Cells

293 T cells (DuBridge et al., 1987) were maintained in Dulbecco's Modified Eagle 390 Medium (D-MEM; Wako, Osaka, Japan) supplemented with 10% (vol/vol) fetal bovine 391 serum (FBS; HyClone Laboratories, Logan, UT) and 1 mM L-glutamine. TZM-bl cells 392 (Platt et al., 1998) from the NIH AIDS research and reference reagent program were 393 maintained in D-MEM supplemented with 10% FBS, 1 mM L-glutamine and 1 mM 394 sodium pyruvate. The human T-cell line, C8166-CCR5 (Shimizu et al., 2006) was 395 maintained in Rosewell Park Memorial Institute 1640 medium (RPMI-1640; Invitrogen, 396 Carlsbad, CA) supplemented with 10% FBS. PtM PBMCs from uninfected monkeys 397 were isolated using the ficoll density gradient separation method. For this procedure, a 398 mixture of 95% lymphocyte separation medium (Wako) and 5% phosphate buffered 399 saline (PBS) was used as a separation solution as described previously (Agy et al., 400 1992; Frumkin et al., 1993). Residual erythrocytes were lysed in ACK lysing buffer 40I (0.15 M NH₄Cl, 1.0 M KHCO₃, 0.1 mM EDTA·Na₂). Depletion of CD8⁺ cells was 402 conducted with the magnetic-activated cell sorting (MACS) system (Miltenyi Biotec, 403

404	Gladbach, Germany). Briefly, isolated PtM PBMCs were stained with phycoerythrin
405	(PE)-conjugated anti-CD8 antibodies (clone SK1, BD Biosciences, San Jose, CA) and
406	then labeled with anti-PE MicroBeads (Miltenyi Biotec). CD8 ⁺ cells were removed
407	using a magnetic column according to the manufacturer's instructions. PBMCs were
408	cultured in RPMI-1640 supplemented with 10% FBS, 2 mM sodium pyruvate, 2 mM
409	L-glutamine, 50 nM 2-mercaptoethanol and 40 μ g/mL gentamicin. PBMCs were
410	stimulated with 25 $\mu g/mL$ Concanavalin A (conA) for 20 h and then cultured in the
4II	presence of 160 U/mL human recombinant interleukin-2 (IL-2; Wako).

4I2

4I3 Viruses

A stock of NL-DT5R virus was prepared from C8166-CCR5 cells transfected with a 4I4 plasmid encoding full-length proviral DNA of NL-DT5R (pNL-DT5R) using the 415 DEAE-Dextran/osmotic shock procedure (Takai and Ohmori, 1990). SIVmac239 416 (Kestler et al., 1988) stock virus was prepared from the culture supernatant of 293 T 417 cells transfected with a plasmid encoding full-length proviral DNA of SIVmac239 with 418 Lipofectamine (Invitrogen). CCR5-tropic subtype C HIV-1 clinical isolates including 419

420 97ZA012 were obtained from the NIH AIDS research and reference reagent program.

42I

422	Generation of recombinant virus through intracellular homologous recombination
423	To generate recombinant virus by IHR, overlapping viral genomic DNA fragments were
424	prepared by PCR amplification. A region spanning the 5' LTR to env was amplified
425	from pNL-DT5R (GenBank accession number: AB266485) using the HIV-1-U3-NotI-F
426	forward primer (5'-ATGCGGCCGCTGGAAGGGCTAATTTGGTCCCAAAG-3';
427	nucleotide positions 1-25 in NL-DT5R, and additional NotI site sequences) and the
428	env-2R reverse primer (5'-CACAGAGTGGGGTTAATTTTACAC-3'; nucleotide
429	positions 6761-6784 in NL-DT5R). PCR was conducted with Expand long-range
430	dNTPack (Roche Diagnostic, Basel, Switzerland). PCR conditions were as follows:
43I	94°C for 2 min followed by 10 cycles of 94°C for 15 sec, 55°C for 30 sec and 68°C for 8
432	min, 25 cycles of 94°C for 15 sec, 55°C for 30 sec, 68°C for 8 min, with 20 sec
433	increments at 68°C for each successive cycle and a final elongation period of 68°C for 7
434	min (fragment I in Fig. 1A). Amplification of a DNA fragment spanning the initiation
435	of vpr to the 3' LTR was derived from subtype C HIV-1 clinical isolates of the HIV-1

436	97ZA012 strain. Viral RNA was isolated from culture supernatant using a QIAamp
437	viral RNA mini kit (Qiagen, Hilden, Germany). Complementary DNA (cDNA) was
438	synthesized with Super Script III first-strand synthesis SuperMix (Invitrogen) using the
439	OFM19-R reverse primer (5'-AGGCAAGCTTTATTGAGGCTTA-3'; nucleotide
440	positions 9604-9625 based on the HXB2 numbering). PCR amplification of the viral
44I	cDNA was conducted using HIV-1vpr-F forward primer
442	(5'-AGATGGAACAAGCCCCAGAAGA-3'; nucleotide positions 5558-5579 in the
443	HXB2 numbering) and OFM19-R reverse primer with the same conditions (fragment II
444	in Fig. 1A). To prepare a fragment spanning the initiation of 5' LTR to the MA region
445	of gag, proviral DNA was extracted from proviral DNA of subtype C HIV-1
446	isolate-infected C8166-CCR5 cells using DNeasy Blood & Tissue kits (Qiagen). The
447	following amplification was conducted using HIV-1cladeC-U3-NotI-F forward primer
448	(5'-ATGCGGCCGCTGGAAGGGTTAATTTACTCAAGAG-3'; nucleotide positions
449	1-24 in the HXB2 numbering plus NotI site sequences) and the PreSCA-R reverse
450	primer (5'-AATCTATCCCATTCTGCAGC-3'; nucleotide positions 1433-1414 in the
45I	HXB2 numbering) (fragment III in Fig. 1A). The PCR products were purified using

452 QIAquick PCR purification kits (Qiagen).

453	Recombinant viruses were generated by means of IHR in the cell. PCR-amplified
454	linear viral DNA fragments were co-transfected into C8166-CCR5 cells by the
455	DEAE-dextran/osmotic shock procedure (Takai and Ohmori, 1990). After transfection,
456	cells were maintained and passaged every 3 days. The culture supernatant was harvested
457	upon observation of virus-induced CPE.
458	
459	Virus titration
460	The infectious titer of the viruses was defined as the median tissue culture infectious
461	dose (TCID ₅₀) in TZM-bl cells as described previously (Li et al., 2005). Four-fold,
462	serially diluted viral stock was used to inoculated TZM-bl cells (5,000 cells per 200 μ L
463	of growth medium containing DEAE-Dextran at a final concentration of 12.5 μ g/mL) in
464	quadruplicate in flat-bottom 96-well plates. After incubation for 48 h at 37°C, the
465	culture supernatant was removed and the cells were treated with 50 μl of Cell lysis
466	solution (Toyo-Inki, Tokyo, Japan) for 15 min at room temperature with shaking. Then,
467	30 μ l of the cell lysate were transferred to F96 MicroWell plates (Thermo Fisher

468	Scientific, Roskilde, Denmark), and the relative luminescence units (RLU) after adding
469	50 μ l of luciferase substrate (PicaGene, Toyo-Inki) to each well was determined using a
470	microplate reader (Mithrus LB940, Berthold Technologies, Bad Wildbad, Germany).
47I	Viral infectivity was measured in RLUs, and positive wells were defined as RLU > 2 \times
472	background. The $TCID_{50}$ was calculated as described previously (Reed and Muench,
473	1938).
474	
475	Viral growth kinetics in pig-tailed macaque PBMCs

476	PtM PBMCs were isolated from two uninfected animals and CD8^+ cells were depleted
477	as described above. Two days after stimulation with Concanavarin A (25 $\mu\text{g/ml}),$ 2.5 \times
478	10^5 cells of CD8 ⁺ cells-depleted PtM PBMCs were inoculated with $2.5\times10^4~TCID_{50}$ of
479	viral stocks by spinoculation (O'Doherty et al., 2000) at 1,200 \times g for 1 h at room
480	temperature. After washing with PBS, the infected cells in 200 μL of culture medium
481	were cultured in round-bottom 96-well plates at 37°C. The upper 150 μl of culture
482	supernatant without aspirating cells in the bottom of the well was exchanged with fresh
483	medium everyday. The harvested supernatant was stored at -20° C prior to measure the

484 activity of RT associated with virions.

485

486 RT assay

The virion-associated RT activity in culture supernatant was monitored as described 487 previously (Willey et al., 1988). Briefly, 6 µL of culture supernatant were combined 488 with 30 μL of RT reaction cocktail [50 mM Tris-HCl, 75 mM KCl, 10 mM 489 dithiothreitol, 4.95 mM MgCl₂, 10 mg/mL polyA RNA, 5 mg/mL oligo-dT₂₀, 0.05% 490 NP40] and 1.66 \times 10⁴ Becquerel equivalent α^{32} P-dTTP (PerkinElmer, Waltham, **49**I Massachusetts, USA) and incubated at 37°C for 2 h with gentle agitation. Next, 3 µL of 492 incubated mixture were blotted onto DE81 ion exchange cellulose paper (GE healthcare, 493 Buckinghamshire, UK). After four washes with 2× saline sodium citrate (SSC), the 494 residual radioactivity from synthesized DNA was counted using a liquid scintillation 495 counter. 496

497

498 Single genome amplification (SGA)

499 SGA of the region spanning the initiation region of vpr to the end of the env gene was

500	conducted as described previously (Salazar-Gonzalez et al., 2008). Synthesized vira
501	cDNA was endpoint diluted and then subjected to nested-PCR. First-round PCR wa
502	conducted with KOD-FX (TOYOBO, Osaka, Japan) in a total of 20 μL of reactio
503	mixture, using the SGA-16F forward prime
504	(5'-TGCAGCAGAGTAATCTTCCCACTACAGG-3'; nucleotide positions 5260-528
505	in NL-DT5R) and the SGA-OFM19R reverse prime
506	(5'-AGGCAAGCTTTATTGAGGCTTAAGCAGTGG-3'; 9771-9800 in NL-DT5R
507	The first-round PCR conditions were as follows: 94°C for 2 min, followed by 35 cycle
508	of 98°C for 10 sec, 63°C for 30 sec and 68°C for 5 min. Second-round PCR wa
509	performed using 1 μ L of the first-round PCR product using the SGA-17F forwar
510	primer (5'-AGAAGAGACAATAGGAGAGGCCTTCGAATG-3'; 5610–5639 i
511	NL-DT5R) and the SGA-2.5R reverse prime
512	(5'-AAAGCAGCTGCTTATATGCAGCATCTGAGG-3'; 9673-9702 in NL-DT5R
513	The second-round PCR conditions were the same as those in the first-round PCR
514	Amplification of the target sequence was confirmed with agarose gel electrophoresis
515	According to a Poisson distribution, when a positive ratio of amplification from dilute

cDNA is < 30% in multiple replicate PCR reactions, the amplicons are predicted to be
amplified from one-copy of template with the probability of > 80%. The single genome
amplicons were purified before sequence analysis.

519

520 Genomic analysis

Sequence analysis was performed using the BigDye terminator v. 3.1 cycle sequencing 52I kit (Applied Biosystems, Foster City, CA) and the ABI PRISM 3130xl genetic analyzer 522 (Applied Biosystems). The 3'-terminal 2,304 nucleotide sequences of env were aligned 523 using the Clustal X software (Thompson et al., 1997). A neighbor-joining phylogenetic 524 tree (Saitou and Nei, 1987) using Kimura's two-parameter model (Kimura, 1980) was 525 constructed using MEGA 5 software (Tamura et al., 2011), and bootstrap values were 526 computed from 1,000 bootstrap replicates (Felsenstein, 1985). Pair-wise distances 527 528 between any two nucleic acid sequences of the 3' terminal 2361 bp of each viral env within the parental HIV-1 97ZA012, HIV-1mt ZA012-P0 and HIV-1mt ZA012-P19 529 were calculated with Kimura's two-parameter model (Kimura, 1980) by using MEGA 5 530 software (Tamura et al., 2011). The statistical significance between each viral pair-wise 53I

distance was calculated with Student's t test using GraphPad Prism (San Diego, CA,USA).

534

535 Co-receptor usage assay

Employing a previously reported method (Nishimura et al., 2010) with minor 536 modifications, co-receptor usage of viruses was determined using the small molecule 537 antagonists, AD101 (Trkola et al., 2002) provided by Dr. Julie Strizki (Schering-Plough 538 Research Institute, Kenilworth, NJ) and AMD3100 (Sigma-Aldrich, St. Louis, MO) 539 (Donzella et al., 1998). Briefly, freshly trypsinized TZM-bl cells (5,000 cells per 100 540 μL of growth medium containing DEAE-Dextran at a final concentration of 12.5 54I μ g/mL) were seeded in flat-bottom 96-well plates. The cells were incubated with 50 μ L 542 of co-receptor antagonists at final concentrations ranging from 0.1 nM to 1,000 nM for 543 1 h at 37°C and inoculated with 100 TCID₅₀ of replication-competent virus in triplicate. 544 After incubation for 48 h at 37°C, luciferase activity was measured, and the percent 545 infectivity relative to that measured in mock-treated wells was determined. 546

548 Experimental infection of pig-tailed macaques with HIV-1mt ZA012

549	HIV-1mt ZA012 challenge stock was prepared from culture supernatant of PtM PBMCs
550	infected with HIV-1mt ZA012-P19. The virus was titrated with PtM PBMCs as
551	described previously (Fujita et al., 2013). Two pig-tailed macaques, PtM01 and PtM02
552	aged 7 and 6 years, respectively, were intravenously inoculated with $1.0\times10^5~TCID_{50}$
553	of HIV-1mt ZA012. Plasma viral RNA loads were measured with TaqMan real time
554	RT-PCR as described previously (Miyake et al., 2006) with minor modifications;
555	RT-PCR was conducted for HIV-1 vpr amplification using the NM3rNvpr-F forward
556	primer (5'-CAGAAGACCAAGGGCCACAG-3') and NM3rNvpr-R reverse primer
557	(5'-GTCTAACAGCTTCACTCTTAAGTTCCTCT-3'). PCR products were detected
558	with a labeled probe, NM3rNvpr-T (5'-Fam-
559	AGGGAGCCATACAATGAATGGACACT-Tamra-3'; Perkin Elmer). Animal
560	experiments were conducted in the biosafety level 3 animal facility, in compliance with
561	institutional regulations approved by the Committee for Experimental Use of
562	Nonhuman Primates of the Institute for Virus Research, Kyoto University, Kyoto,
563	Japan.

564

565 Flow cytometry

To enumerate CD4⁺ T-lymphocytes, and memory and naïve CD4⁺ T-lymphocytes, 566 whole blood samples were stained with fluorescently labeled mouse monoclonal 567 antibodies. Anti-CD3 (clone SP34-2) conjugated with Pacific Blue, anti-CD4 (clone 568 L200) conjugated with PerCP-Cy5.5, anti-CD8 (clone SK1) conjugated with APC-Cy7, 569 anti-CD20 (clone L27) conjugated with FITC and anti-CD95 (clone DX2) conjugated 570 with APC were purchased from BD Biosciences, and anti-CD28 (clone CD28.2) 57I conjugated with PE was purchased from eBioscience (San Diego, CA). 572 CD28^{high}CD95^{low}CD4⁺ or CD28^{high/low}CD95^{high}CD4⁺ T-cell subsets were considered as 573 naïve or memory CD4⁺ T-lymphocytes, respectively (Pitcher et al., 2002). The absolute 574 number of lymphocytes in the blood was determined using an automated hematology 575 analyzer, KX-21 (Sysmex, Kobe, Japan). 576

577 Acknowledgements

The authors thank Akio Adachi for providing plasmid DNA encoding the full-length 578 sequence of NL-DT5R; Drs. Julie Strizki and Paul Zavodny of the Schering-Plough 579 Research Institute, Kenilworth, NJ, USA, for providing AD101; the NIH AIDS 580 Research & Reference Reagent Program for providing primary isolates of HIV-1 and 581 TZM-bl cells; Kenta Matsuda for helpful discussion; former and current members of the 582 Igarashi Laboratory for discussion and support with animal procedures and analyses. 583 This work was supported by a Research on HIV/AIDS grant (awarded to T.M. and T.I., 584 independently) from The Ministry of Health, Labor and Welfare of Japan, and by a 585 586 Grant-in-Aid for Scientific Research (B) (awarded to T.M. and T.I., independently) from the Japan Society for the Promotion of Science. 587 588

References 589 590 Agy, M.B., Frumkin, L.R., Corey, L., Coombs, R.W., Wolinsky, S.M., Koehler, J., 59I Morton, W.R., Katze, M.G., 1992. Infection of Macaca nemestrina by human 592 immunodeficiency virus type-1. Science 257, 103-106. 593 Berthoux, L., Sebastian, S., Sokolskaja, E., Luban, J., 2005. Cyclophilin A is required 594 for TRIM5{alpha}-mediated resistance to HIV-1 in Old World monkey cells. 595 Proceedings of the National Academy of Sciences of the United States of 596 America 102, 14849-14853. 597 Bitzegeio, J., Sampias, M., Bieniasz, P.D., Hatziioannou, T., 2013. Adaptation to the 598 interferon-induced antiviral state by human and simian immunodeficiency 599 600 viruses. Journal of virology 87, 3549-3560. Brenchley, J.M., Schacker, T.W., Ruff, L.E., Price, D.A., Taylor, J.H., Beilman, G.J., 601 Nguyen, P.L., Khoruts, A., Larson, M., Haase, A.T., Douek, D.C., 2004. CD4+ 602 603 T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. The Journal of experimental medicine 200, 749-759. 604 605 Brennan, G., Kozyrev, Y., Hu, S.-L., 2008. TRIMCyp expression in Old World 606 primates Macaca nemestrina and Macaca fascicularis. Proceedings of the National Academy of Sciences of the United States of America 105, 3569-3574. 607 608 Chen, Z., Huang, Y., Zhao, X., Skulsky, E., Lin, D., Ip, J., Gettie, A., Ho, D.D., 2000. 609 Enhanced infectivity of an R5-tropic simian/human immunodeficiency virus carrying human immunodeficiency virus type 1 subtype C envelope after serial 610 passages in pig-tailed macaques (Macaca nemestrina). Journal of virology 74, 611 6501-6510. 612 Choe, H., Farzan, M., Sun, Y., Sullivan, N., Rollins, B., Ponath, P.D., Wu, L., Mackay, 613 C.R., LaRosa, G., Newman, W., Gerard, N., Gerard, C., Sodroski, J., 1996. The 614 beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary 615 616 HIV-1 isolates. Cell 85, 1135-1148. Choisy, M., Woelk, C.H., Guegan, J.F., Robertson, D.L., 2004. Comparative study of 617 618 adaptive molecular evolution in different human immunodeficiency virus groups and subtypes. Journal of virology 78, 1962-1970. 619 Donzella, G.A., Schols, D., Lin, S.W., Este, J.A., Nagashima, K.A., Maddon, P.J., 620 62I Allaway, G.P., Sakmar, T.P., Henson, G., De Clercq, E., Moore, J.P., 1998.

- AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4
 co-receptor. Nature medicine 4, 72-77.
- Doranz, B.J., Rucker, J., Yi, Y., Smyth, R.J., Samson, M., Peiper, S.C., Parmentier, M.,
 Collman, R.G., Doms, R.W., 1996. A dual-tropic primary HIV-1 isolate that
 uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as
 fusion cofactors. Cell 85, 1149-1158.
- DuBridge, R.B., Tang, P., Hsia, H.C., Leong, P.M., Miller, J.H., Calos, M.P., 1987.
 Analysis of mutation in human cells by using an Epstein-Barr virus shuttle
 system. Mol Cell Biol 7, 379-387.
- Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap.
 Evolution 39, 783–791.
- Feng, Y., Broder, C.C., Kennedy, P.E., Berger, E.A., 1996. HIV-1 entry cofactor:
 functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor.
 Science 272, 872-877.
- Freed, E.O., Martin, M.A., 1996. Domains of the human immunodeficiency virus type 1
 matrix and gp41 cytoplasmic tail required for envelope incorporation into
 virions. Journal of virology 70, 341-351.
- Frumkin, L.R., Agy, M.B., Coombs, R.W., Panther, L., Morton, W.R., Koehler, J.,
 Florey, M.J., Dragavon, J., Schmidt, A., Katze, M.G., et al., 1993. Acute
 infection of Macaca nemestrina by human immunodeficiency virus type 1.
 Virology 195, 422-431.
- Fujita, Y., Otsuki, H., Watanabe, Y., Yasui, M., Kobayashi, T., Miura, T., Igarashi, T.,
 2013. Generation of a replication-competent chimeric simian-human
 immunodeficiency virus carrying env from subtype C clinical isolate through
 intracellular homologous recombination. Virology 436, 100-111.
- Gaschen, B., Taylor, J., Yusim, K., Foley, B., Gao, F., Lang, D., Novitsky, V., Haynes,
 B., Hahn, B.H., Bhattacharya, T., Korber, B., 2002. Diversity considerations in
 HIV-1 vaccine selection. Science 296, 2354-2360.
- Gibbs, R.A., Rogers, J., Katze, M.G., Bumgarner, R., Weinstock, G.M., Mardis, E.R.,
 Remington, K.A., Strausberg, R.L., Venter, J.C., Wilson, R.K., Batzer, M.A.,
 Bustamante, C.D., Eichler, E.E., Hahn, M.W., Hardison, R.C., Makova, K.D.,
 Miller, W., Milosavljevic, A., Palermo, R.E., Siepel, A., Sikela, J.M., Attaway,
 T., Bell, S., Bernard, K.E., Buhay, C.J., Chandrabose, M.N., Dao, M., Davis, C.,

655	Delehaunty, K.D., Ding, Y., Dinh, H.H., Dugan-Rocha, S., Fulton, L.A., Gabisi,
656	R.A., Garner, T.T., Godfrey, J., Hawes, A.C., Hernandez, J., Hines, S., Holder,
657	M., Hume, J., Jhangiani, S.N., Joshi, V., Khan, Z.M., Kirkness, E.F., Cree, A.,
658	Fowler, R.G., Lee, S., Lewis, L.R., Li, Z., Liu, Y.S., Moore, S.M., Muzny, D.,
659	Nazareth, L.V., Ngo, D.N., Okwuonu, G.O., Pai, G., Parker, D., Paul, H.A.,
660	Pfannkoch, C., Pohl, C.S., Rogers, Y.H., Ruiz, S.J., Sabo, A., Santibanez, J.,
661	Schneider, B.W., Smith, S.M., Sodergren, E., Svatek, A.F., Utterback, T.R.,
662	Vattathil, S., Warren, W., White, C.S., Chinwalla, A.T., Feng, Y., Halpern, A.L.,
663	Hillier, L.W., Huang, X., Minx, P., Nelson, J.O., Pepin, K.H., Qin, X., Sutton,
664	G.G., Venter, E., Walenz, B.P., Wallis, J.W., Worley, K.C., Yang, S.P., Jones,
665	S.M., Marra, M.A., Rocchi, M., Schein, J.E., Baertsch, R., Clarke, L., Csuros,
666	M., Glasscock, J., Harris, R.A., Havlak, P., Jackson, A.R., Jiang, H., Liu, Y.,
667	Messina, D.N., Shen, Y., Song, H.X., Wylie, T., Zhang, L., Birney, E., Han, K.,
668	Konkel, M.K., Lee, J., Smit, A.F., Ullmer, B., Wang, H., Xing, J., Burhans, R.,
669	Cheng, Z., Karro, J.E., Ma, J., Raney, B., She, X., Cox, M.J., Demuth, J.P.,
670	Dumas, L.J., Han, S.G., Hopkins, J., Karimpour-Fard, A., Kim, Y.H., Pollack,
671	J.R., Vinar, T., Addo-Quaye, C., Degenhardt, J., Denby, A., Hubisz, M.J., Indap,
672	A., Kosiol, C., Lahn, B.T., Lawson, H.A., Marklein, A., Nielsen, R., Vallender,
673	E.J., Clark, A.G., Ferguson, B., Hernandez, R.D., Hirani, K., Kehrer-Sawatzki,
674	H., Kolb, J., Patil, S., Pu, L.L., Ren, Y., Smith, D.G., Wheeler, D.A., Schenck, I.
675	Ball, E.V., Chen, R., Cooper, D.N., Giardine, B., Hsu, F., Kent, W.J., Lesk, A.,
676	Nelson, D.L., O'Brien W, E., Prufer, K., Stenson, P.D., Wallace, J.C., Ke, H.,
677	Liu, X.M., Wang, P., Xiang, A.P., Yang, F., Barber, G.P., Haussler, D.,
678	Karolchik, D., Kern, A.D., Kuhn, R.M., Smith, K.E., Zwieg, A.S., 2007.
679	Evolutionary and biomedical insights from the rhesus macaque genome. Science
680	316, 222-234.
(0	

Gnanakaran, S., Lang, D., Daniels, M., Bhattacharya, T., Derdeyn, C.A., Korber, B.,
2007. Clade-specific differences between human immunodeficiency virus type 1
clades B and C: diversity and correlations in C3-V4 regions of gp120. Journal of
virology 81, 4886-4891.

685 Goff, S.P., 2007. Retroviridae: The Retroviruses and Their Replication, in: Knipe, D.M., 686 Howley, P.M. (Eds.), Fields Virology, 5th Edition. Lippincott Williams & 687 Wilkins, Philadelphia, PA.

- 688 Goulder, P.J., Watkins, D.I., 2004. HIV and SIV CTL escape: implications for vaccine
 689 design. Nature reviews. Immunology 4, 630-640.
- Harouse, J.M., Gettie, A., Tan, R.C.H., Blanchard, J., Cheng-Mayer, C., 1999. Distinct
 pathogenic sequela in rhesus macaques infected with CCR5 or CXCR4 utilizing
 SHIVs. Science 284, 816-819.
- Hatziioannou, T., Ambrose, Z., Chung, N.P., Piatak, M., Jr., Yuan, F., Trubey, C.M.,
 Coalter, V., Kiser, R., Schneider, D., Smedley, J., Pung, R., Gathuka, M., Estes,
 J.D., Veazey, R.S., KewalRamani, V.N., Lifson, J.D., Bieniasz, P.D., 2009. A
 macaque model of HIV-1 infection. Proceedings of the National Academy of
 Sciences of the United States of America 106, 4425-4429.
- Hatziioannou, T., Princiotta, M., Piatak, M., Yuan, F., Zhang, F., Lifson, J.D., Bieniasz,
 P.D., 2006. Generation of simian-tropic HIV-1 by restriction factor evasion.
 Science 314, 95.
- Hemelaar, J., 2012. The origin and diversity of the HIV-1 pandemic. Trends in
 molecular medicine 18, 182-192.
- Humes, D., Emery, S., Laws, E., Overbaugh, J., 2012. A species-specific amino acid
 difference in the macaque CD4 receptor restricts replication by global
 circulating HIV-1 variants representing viruses from recent infection. Journal of
 virology 86, 12472-12483.
- Igarashi, T., Iyengar, R., Byrum, R.A., Buckler-White, A., Dewar, R.L., Buckler, C.E.,
 Lane, H.C., Kamada, K., Adachi, A., Martin, M.A., 2007. Human
 immunodeficiency virus type 1 derivative with 7% simian immunodeficiency
 virus genetic content is able to establish infections in pig-tailed macaques.
 Journal of virology 81, 11549-11552.
- Javaherian, K., Langlois, A.J., Schmidt, S., Kaufmann, M., Cates, N., Langedijk, J.P.,
 Meloen, R.H., Desrosiers, R.C., Burns, D.P., Bolognesi, D.P., et al., 1992. The
 principal neutralization determinant of simian immunodeficiency virus differs
 from that of human immunodeficiency virus type 1. Proceedings of the National
 Academy of Sciences of the United States of America 89, 1418-1422.
- Jia, B., Serra-Moreno, R., Neidermyer, W., Rahmberg, A., Mackey, J., Fofana, I.B.,
 Johnson, W.E., Westmoreland, S., Evans, D.T., 2009. Species-specific activity
 of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2. PLoS
 pathogens 5, e1000429.

- Kalyanaraman, S., Jannoun-Nasr, R., York, D., Luciw, P.A., Robinson, R., Srinivasan,
 A., 1988. Homologous recombination between human immunodeficiency viral
 DNAs in cultured human cells: analysis of the factors influencing recombination.
 Biochemical and biophysical research communications 157, 1051-1060.
- Kamada, K., Igarashi, T., Martin, M.A., Khamsri, B., Hatcho, K., Yamashita, T., Fujita,
 M., Uchiyama, T., Adachi, A., 2006. Generation of HIV-1 derivatives that
 productively infect macaque monkey lymphoid cells. Proceedings of the
 National Academy of Sciences of the United States of America 103,
 16959-16964.
- Kanki, P.J., McLane, M.F., King, N.W., Jr., Letvin, N.L., Hunt, R.D., Sehgal, P., Daniel,
 M.D., Desrosiers, R.C., Essex, M., 1985. Serologic identification and
 characterization of a macaque T-lymphotropic retrovirus closely related to
 HTLV-III. Science 228, 1199-1201.
- Keckesova, Z., Ylinen, L.M., Towers, G.J., 2006. Cyclophilin A renders human
 immunodeficiency virus type 1 sensitive to Old World monkey but not human
 TRIM5 alpha antiviral activity. Journal of virology 80, 4683-4690.
- Kellam, P., Larder, B.A., 1994. Recombinant virus assay: a rapid, phenotypic assay for
 assessment of drug susceptibility of human immunodeficiency virus type 1
 isolates. Antimicrobial Agents and Chemotherapy 38, 23-30.
- Kestler, H.W., 3rd, Li, Y., Naidu, Y.M., Butler, C.V., Ochs, M.F., Jaenel, G., King,
 N.W., Daniel, M.D., Desrosiers, R.C., 1988. Comparison of simian
 immunodeficiency virus isolates. Nature 331, 619-622.
- Kiepiela, P., Ngumbela, K., Thobakgale, C., Ramduth, D., Honeyborne, I., Moodley, E.,
 Reddy, S., de Pierres, C., Mncube, Z., Mkhwanazi, N., Bishop, K., van der Stok,
 M., Nair, K., Khan, N., Crawford, H., Payne, R., Leslie, A., Prado, J.,
 Prendergast, A., Frater, J., McCarthy, N., Brander, C., Learn, G.H., Nickle, D.,
 Rousseau, C., Coovadia, H., Mullins, J.I., Heckerman, D., Walker, B.D.,
 Goulder, P., 2007. CD8+ T-cell responses to different HIV proteins have
 discordant associations with viral load. Nature medicine 13, 46-53.
- Kimura, M., 1980. A simple method for estimating evolutionary rates of base
 substitutions through comparative studies of nucleotide sequences. Journal of
 molecular evolution 16, 111-120.
- 753 Kuiken, C.L., Foley, B., Guzman, E., Korber, B.T., 1999. Determinants of HIV-1

- Protein Evolution, in: Crandall, K.A. (Ed.), Molecular Evolution of HIV. Johns
 Hopkins University Press, Baltimore MD.
- Li, M., Gao, F., Mascola, J.R., Stamatatos, L., Polonis, V.R., Koutsoukos, M., Voss, G.,
 Goepfert, P., Gilbert, P., Greene, K.M., Bilska, M., Kothe, D.L.,
 Salazar-Gonzalez, J.F., Wei, X., Decker, J.M., Hahn, B.H., Montefiori, D.C.,
 2005. Human immunodeficiency virus type 1 env clones from acute and early
 subtype B infections for standardized assessments of vaccine-elicited
 neutralizing antibodies. Journal of virology 79, 10108-10125.
- Luciw, P.A., Pratt-Lowe, E., Shaw, K.E., Levy, J.A., Cheng-Mayer, C., 1995. Persistent
 infection of rhesus macaques with T-cell-line-tropic and macrophage-tropic
 clones of simian/human immunodeficiency viruses (SHIV). Proceedings of the
 National Academy of Sciences of the United States of America 92, 7490-7494.
- Mariani, R., Chen, D., Schrofelbauer, B., Navarro, F., Konig, R., Bollman, B., Munk, C.,
 Nymark-McMahon, H., Landau, N.R., 2003. Species-specific exclusion of
 APOBEC3G from HIV-1 virions by Vif. Cell 114, 21-31.
- Mehandru, S., Poles, M.A., Tenner-Racz, K., Horowitz, A., Hurley, A., Hogan, C.,
 Boden, D., Racz, P., Markowitz, M., 2004. Primary HIV-1 infection is
 associated with preferential depletion of CD4+ T lymphocytes from effector
 sites in the gastrointestinal tract. The Journal of experimental medicine 200,
 761-770.
- Miyake, A., Ibuki, K., Enose, Y., Suzuki, H., Horiuchi, R., Motohara, M., Saito, N.,
 Nakasone, T., Honda, M., Watanabe, T., Miura, T., Hayami, M., 2006. Rapid
 dissemination of a pathogenic simian/human immunodeficiency virus to
 systemic organs and active replication in lymphoid tissues following intrarectal
 infection. The Journal of general virology 87, 1311-1320.
- Moore, P.L., Gray, E.S., Choge, I.A., Ranchobe, N., Mlisana, K., Abdool Karim, S.S.,
 Williamson, C., Morris, L., 2008. The c3-v4 region is a major target of
 autologous neutralizing antibodies in human immunodeficiency virus type 1
 subtype C infection. Journal of virology 82, 1860-1869.
- Moore, P.L., Ranchobe, N., Lambson, B.E., Gray, E.S., Cave, E., Abrahams, M.R.,
 Bandawe, G., Mlisana, K., Abdool Karim, S.S., Williamson, C., Morris, L.,
 2009. Limited neutralizing antibody specificities drive neutralization escape in
 early HIV-1 subtype C infection. PLoS pathogens 5, e1000598.

- Murphey-Corb, M., Martin, L.N., Rangan, S.R., Baskin, G.B., Gormus, B.J., Wolf, R.H.,
 Andes, W.A., West, M., Montelaro, R.C., 1986. Isolation of an
 HTLV-III-related retrovirus from macaques with simian AIDS and its possible
 origin in asymptomatic mangabeys. Nature 321, 435-437.
- Ndung'u, T., Lu, Y., Renjifo, B., Touzjian, N., Kushner, N., Pena-Cruz, V., Novitsky,
 V.A., Lee, T.H., Essex, M., 2001. Infectious simian/human immunodeficiency
 virus with human immunodeficiency virus type I subtype C from an African
 isolate: rhesus macaque model. Journal of virology 75, 11417-11425
- Neil, S., Bieniasz, P., 2009. Human immunodeficiency virus, restriction factors, and
 interferon. Journal of interferon & cytokine research : the official journal of the
 International Society for Interferon and Cytokine Research 29, 569-580.
- Neil, S.J., Zang, T., Bieniasz, P.D., 2008. Tetherin inhibits retrovirus release and is
 antagonized by HIV-1 Vpu. Nature 451, 425-430.
- Nishimura, Y., Igarashi, T., Donau, O.K., Buckler-White, A., Buckler, C., Lafont, B.A.,
 Goeken, R.M., Goldstein, S., Hirsch, V.M., Martin, M.A., 2004. Highly
 pathogenic SHIVs and SIVs target different CD4+ T cell subsets in rhesus
 monkeys, explaining their divergent clinical courses. Proceedings of the
 National Academy of Sciences of the United States of America 101,
 12324-12329.
- Nishimura, Y., Shingai, M., Willey, R., Sadjadpour, R., Lee, W.R., Brown, C.R.,
 Brenchley, J.M., Buckler-White, A., Petros, R., Eckhaus, M., Hoffman, V.,
 Igarashi, T., Martin, M. A., 2010. Generation of the pathogenic R5-tropic
 simian/human immunodeficiency virus SHIVAD8 by serial passaging in rhesus
 macaques. Journal of virology 84, 4769-4781.
- Nomaguchi, M., Doi, N., Fujiwara, S., Saito, A., Akari, H., Nakayama, E.E., Shioda, T.,
 Yokoyama, M., Sato, H., Adachi, A., 2013. Systemic biological analysis of the
 mutations in two distinct HIV-1mt genomes occurred during replication in
 macaque cells. Microbes and infection / Institut Pasteur 15, 319-328.
- 815 O'Doherty, U., Swiggard, W.J., Malim, M.H., 2000. Human immunodeficiency virus
 816 type 1 spinoculation enhances infection through virus binding. Journal of
 817 virology 74, 10074-10080.
- 818 Okoye, A., Meier-Schellersheim, M., Brenchley, J.M., Hagen, S.I., Walker, J.M.,
 819 Rohankhedkar, M., Lum, R., Edgar, J.B., Planer, S.L., Legasse, A., Sylwester,

A.W., Piatak, M., Jr., Lifson, J.D., Maino, V.C., Sodora, D.L., Douek, D.C.,
Axthelm, M.K., Grossman, Z., Picker, L.J., 2007. Progressive CD4+ central
memory T cell decline results in CD4+ effector memory insufficiency and overt
disease in chronic SIV infection. The Journal of experimental medicine 204,
2171-2185.

- Picker, L.J., Hagen, S.I., Lum, R., Reed-Inderbitzin, E.F., Daly, L.M., Sylwester, A.W.,
 Walker, J.M., Siess, D.C., Piatak, M., Jr., Wang, C., Allison, D.B., Maino, V.C.,
 Lifson, J.D., Kodama, T., Axthelm, M.K., 2004. Insufficient production and
 tissue delivery of CD4+ memory T cells in rapidly progressive simian
 immunodeficiency virus infection. The Journal of experimental medicine 200,
 1299-1314.
- Pitcher, C.J., Hagen, S.I., Walker, J.M., Lum, R., Mitchell, B.L., Maino, V.C., Axthelm,
 M.K., Picker, L.J., 2002. Development and homeostasis of T cell memory in
 rhesus macaque. Journal of immunology 168, 29-43.
- Platt, E.J., Wehrly, K., Kuhmann, S.E., Chesebro, B., Kabat, D., 1998. Effects of CCR5
 and CD4 cell surface concentrations on infections by macrophagetropic isolates
 of human immunodeficiency virus type 1. Journal of virology 72, 2855-2864.
- Quinones-Mateu, M.E., Gao, Y., Ball, S.C., Marozsan, A.J., Abraha, A., Arts, E.J.,
 2002. In vitro intersubtype recombinants of human immunodeficiency virus type
 1: comparison to recent and circulating in vivo recombinant forms. Journal of
 virology 76, 9600-9613.
- Reed, L., J., Muench, H., 1938. A simple method of estimating fifty percent endpoints.
 Am. J. Hyg 27, 493-497.
- Reimann, K.A., Li, J.T., Veazey, R., Halloran, M., Park, I.-W., Karlsson, G.B.,
 Sodroski, J., Letvin, N., 1996. A chimeric simian/human immunodeficiency
 virus expressing a primary patient human immunodeficiency vrus type 1isolate *env* causes an AIDS-like disease after *in vivo* passage in rhesus monkeys.
 Journal of virology 70, 6922–6928.
- Ren, W., Mumbauer, A., Gettie, A., Seaman, M.S., Russell-Lodrigue, K., Blanchard, J.,
 Westmoreland, S., Cheng-Mayer, C., 2013. Generation of lineage-related,
 mucosally transmissible subtype C R5 simian-human immunodeficiency
 viruses capable of AIDS development, induction of neurological disease, and
 coreceptor switching in rhesus macaques. Journal of virology 87, 6137-6149.

- 853 Saitou, N., Nei, M., 1987. The neighbor-joining method: a new method for
 854 reconstructing phylogenetic trees. Molecular biology and evolution 4, 406-425.
- 855 Salazar-Gonzalez, J.F., Bailes, E., Pham, K.T., Salazar, M.G., Guffey, M.B., Keele,
- B.F., Derdeyn, C.A., Farmer, P., Hunter, E., Allen, S., Manigart, O., Mulenga, J.,
 Anderson, J.A., Swanstrom, R., Haynes, B.F., Athreya, G.S., Korber, B.T.,
 Sharp, P.M., Shaw, G.M., Hahn, B.H., 2008. Deciphering human
 immunodeficiency virus type 1 transmission and early envelope diversification
 by single-genome amplification and sequencing. Journal of virology 82,
 3952-3970.
- Sheehy, A.M., Gaddis, N.C., Choi, J.D., Malim, M.H., 2002. Isolation of a human gene
 that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature
 418, 646-650.
- Shibata, R., Adachi, A., 1992. SIV/HIV recombinants and their use in studying
 biological properties. AIDS research and human retroviruses 8, 403-409.
- Shimizu, Y., Okoba, M., Yamazaki, N., Goto, Y., Miura, T., Hayami, M., Hoshino, H.,
 Haga, T., 2006. Construction and in vitro characterization of a chimeric simian
 and human immunodeficiency virus with the RANTES gene. Microbes and
 infection / Institut Pasteur 8, 105-113.
- Shingai, M., Yoshida, T., Martin, M.A., Strebel, K., 2011. Some human
 immunodeficiency virus type 1 Vpu proteins are able to antagonize macaque
 BST-2 in vitro and in vivo: Vpu-negative simian-human immunodeficiency
 viruses are attenuated in vivo. Journal of virology 85, 9708-9715.
- Song, R.J., Chenine, A.L., Rasmussen, R.A., Ruprecht, C.R., Mirshahidi, S., Grisson,
 R.D., Xu, W., Whitney, J.B., Goins, L.M., Ong, H., Li, P.L., Shai-Kobiler, E.,
 Wang, T., McCann, C.M., Zhang, H., Wood, C., Kankasa, C., Secor, W.E.,
 McClure, H.M., Strobert, E., Else, J.G., Ruprecht, R.M., 2006. Molecularly
 cloned SHIV-1157ipd3N4: a highly replication- competent, mucosally
 transmissible R5 simian-human immunodeficiency virus encoding HIV clade
 C Env. Journal of virology 80, 8729-8738
- Srinivasan, A., York, D., Jannoun-Nasr, R., Kalyanaraman, S., Swan, D., Benson, J.,
 Bohan, C., Luciw, P.A., Schnoll, S., Robinson, R.A., Desai, S.M., Devare, S.G.,
 1989. Generation of hybrid human immunodeficiency virus by homologous
 recombination. Proceedings of the National Academy of Sciences of the United

886

States of America 86, 6388-6392.

- Stremlau, M., Owens, C.M., Perron, M.J., Kiessling, M., Autissier, P., Sodroski, J.,
 2004. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection
 in Old World monkeys. Nature 427, 848-853.
- Stremlau, M., Perron, M., Lee, M., Li, Y., Song, B., Javanbakht, H., Diaz-Griffero, F.,
 Anderson, D.J., Sundquist, W.I., Sodroski, J., 2006. Specific recognition and
 accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor.
 Proceedings of the National Academy of Sciences of the United States of
 America 103, 5514-5519.
- Takai, T., Ohmori, H., 1990. DNA transfection of mouse lymphoid cells by the
 combination of DEAE-dextran-mediated DNA uptake and osmotic shock
 procedure. Biochimica et biophysica acta 1048, 105-109.
- Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5:
 molecular evolutionary genetics analysis using maximum likelihood,
 evolutionary distance, and maximum parsimony methods. Molecular biology
 and evolution 28, 2731-2739.
- Thippeshappa, R., Polacino, P., Yu Kimata, M.T., Siwak, E.B., Anderson, D., Wang,
 W., Sherwood, L., Arora, R., Wen, M., Zhou, P., Hu, S.L., Kimata, J.T., 2011.
 Vif substitution enables persistent infection of pig-tailed macaques by human
 immunodeficiency virus type 1. Journal of virology 85, 3767-3779.
- Thippeshappa, R., Ruan, H., Wang, W., Zhou, P., Kimata, J.T., 2013. A Variant
 Macaque-Tropic Human Immunodeficiency Virus Type 1 Is Resistant to Alpha
 Interferon-Induced Restriction in Pig-Tailed Macaque CD4+ T Cells. Journal of
 virology 87, 6678-6692.
- 910 Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The
 911 CLUSTAL_X windows interface: flexible strategies for multiple sequence
 912 alignment aided by quality analysis tools. Nucleic acids research 25, 4876-4882.
- 913 Trkola, A., Kuhmann, S.E., Strizki, J.M., Maxwell, E., Ketas, T., Morgan, T., Pugach,
 914 P., Xu, S., Wojcik, L., Tagat, J., Palani, A., Shapiro, S., Clader, J.W.,
 915 McCombie, S., Reyes, G.R., Baroudy, B.M., Moore, J.P., 2002. HIV-1 escape
 916 from a small molecule, CCR5-specific entry inhibitor does not involve CXCR4
 917 use. Proceedings of the National Academy of Sciences of the United States of
 918 America 99, 395-400.

- Velpandi, A., Nagashunmugam, T., Murthy, S., Cartas, M., Monken, C., Srinivasan, A.,
 1991. Generation of hybrid human immunodeficiency virus utilizing the
 cotransfection method and analysis of cellular tropism. Journal of virology 65,
 4847-4852.
- Willey, R.L., Smith, D.H., Lasky, L.A., Theodore, T.S., Earl, P.L., Moss, B., Capon,
 D.J., Martin, M.A., 1988. In vitro mutagenesis identifies a region within the
 envelope gene of the human immunodeficiency virus that is critical for
 infectivity. Journal of virology 62, 139-147.
- 927 Yamashita, T., Doi, N., Adachi, A., Nomaguchi, M., 2008. Growth ability in simian
 928 cells of monkey cell-tropic HIV-1 is greatly affected by downstream region of
 929 the vif gene. The journal of medical investigation : JMI 55, 236-240.
- 930
- 93I
- 932

932 Figure Legends

Fig 1. Schematic representation of the genome organization of human 933 934 immunodeficiency virus (HIV)-1 and monkey-tropic HIV-1 (HIV-1mt). Genome organizations of NL-DT5R (A), subtype C HIV-1 97Z012 (B) and HIV-1mt ZA012-P0 935 (C) are depicted. The horizontal line represents DNA fragments I, II and III, used for 936 937 intracellular homologous recombination. Fragment I encodes a region from the 5' LTR to env of NL-DT5R plasmid DNA. Fragment II encodes a region from the initiation of 938 vpr to the R region of the 3' LTR of the HIV-1 97ZA012 strain. Fragment III encodes a 939 region from the 5' LTR to upstream of the cyclophilin A-binding motif of the virus. 940 Sequences from NL4-3 (open box), HIV-1 97ZA012 (filled box) and the SIVmac239 94I genome (diagonally striped box) are depicted. The gray box in HIV-1mt ZA012-P0 942 represents a gene that was not identified by direct sequence analysis. 943

944

Fig 2. Improved replication of HIV-1mt ZA012 throughout *in vitro* passages in
CD8⁺ cell-depleted PtM peripheral blood mononuclear cells (PBMCs).
HIV-1mt ZA012-P0 was used to spinoculate CD8⁺ cell-depleted PtM PBMCs, and
virion-associated RT activity in the culture supernatant was monitored daily. Some of

the infected cells were co-cultured with freshly prepared CD8⁺ cell-depleted PtM
PBMCs. One period of passage was indicated in the shaded grey or white zones. The
dotted line indicates data not available.

952

Fig 3. Growth kinetics of HIV-1mt ZA012 in CD8⁺ cell-depleted depleted PtM PBMCs. Growth kinetics of HIV-1mt ZA012-P0, HIV-1mt ZA012-P19, SIVmac239 and NL-DT5R were compared in PBMCs from two PtMs. Each virus was used to spinoculate CD8⁺ cell-depleted PtM PBMCs (MOI = 0.1 TCID_{50} per cell), and the virion-associated RT activity in the culture supernatant was monitored. The figure shown is representative of four independent experiments.

959

Fig 4. Recombination breakpoints in HIV-1mt ZA012-P0 and ZA012-P19 genomes.
The genome organizations of HIV-1mt ZA012-P0 and HIV-1mt ZA012-P19 are
schematically represented (upper two diagrams). The region from the initiation of *vpr* to
the end of *env* that included recombination breakpoint sites is depicted in the third
diagram; the HIV-1mt ZA012-P0 (17 SGA sequences) or HIV-1mt ZA012-P19 (seven

970	Fig 5. Phylogenic analysis of partial env sequences. A neighbor-joining phylogenic
969	
968	The numbers (left) indicate the numbers of sequences per analyzed sequence.
967	HIV-1mt ZA012-P19 were classified into one recombination breakpoint pattern (R8).
966	classified into seven patterns of recombination breakpoints (R1 to R7). Sequences from
965	SGA sequences) are depicted (bottom). Sequences from HIV-1mt ZA012-P0 were

tree was constructed from the partial nucleic acid sequences of env (nucleotide positions 971 211-2571 based on env of HXB2 numbering). The sequences of HIV-1 97ZA012 972 (white circle), HIV-1mt ZA012-P0 (grey circle) and HIV-1mt ZA012-P19 (black circle) 973 were determined from SGA sequences. HIV-1 97ZA012 (accession number: 974 AF286227) and 98CN007 (AF286230) reference sequences were obtained from the Los 975 Alamos HIV sequence database (http://hiv-web.lanl.gov/). R1-R8 correspond to the 976 patterns of recombination breakpoint types in Figure 2. Bootstrap values were computed 977 from 1,000 bootstrap replicates, and only > 90% are shown at branches. The scale bar 978 indicates the substitutions per site. 979

981	Fig 6. Co-receptor usage of HIV-1mt ZA012-P19. Infectivity of HIV-1 NL4-3,
982	SIVmac239 and HIV-1mt ZA012-P19 to TZM-bl cells was assessed in the presence of
983	increasing amounts of AMD3100 (CXCR4 inhibitor), AD101 (CCR5 inhibitor) or both.
984	The experiment was conducted in triplicate.
985	
986	Fig 7. HIV-1mt ZA012 infection of pig-tailed macaques. Two pig-tailed macaques

987 were inoculated intravenously with HIV-1mt ZA012 (100,000 TCID₅₀), and the plasma

988 viral RNA burdens (A) and circulating CD4⁺ T-lymphocytes (B) were monitored.

Figure 1

Figure 3

Figure5 Click here to download Figure: Figure5.pdf

Figure 5

0.01

Figure 6

