192 research outputs found

    Pareto-Optimal Allocation of Indivisible Goods with Connectivity Constraints

    Full text link
    We study the problem of allocating indivisible items to agents with additive valuations, under the additional constraint that bundles must be connected in an underlying item graph. Previous work has considered the existence and complexity of fair allocations. We study the problem of finding an allocation that is Pareto-optimal. While it is easy to find an efficient allocation when the underlying graph is a path or a star, the problem is NP-hard for many other graph topologies, even for trees of bounded pathwidth or of maximum degree 3. We show that on a path, there are instances where no Pareto-optimal allocation satisfies envy-freeness up to one good, and that it is NP-hard to decide whether such an allocation exists, even for binary valuations. We also show that, for a path, it is NP-hard to find a Pareto-optimal allocation that satisfies maximin share, but show that a moving-knife algorithm can find such an allocation when agents have binary valuations that have a non-nested interval structure.Comment: 21 pages, full version of paper at AAAI-201

    Cooperative Games with Bounded Dependency Degree

    Full text link
    Cooperative games provide a framework to study cooperation among self-interested agents. They offer a number of solution concepts describing how the outcome of the cooperation should be shared among the players. Unfortunately, computational problems associated with many of these solution concepts tend to be intractable---NP-hard or worse. In this paper, we incorporate complexity measures recently proposed by Feige and Izsak (2013), called dependency degree and supermodular degree, into the complexity analysis of cooperative games. We show that many computational problems for cooperative games become tractable for games whose dependency degree or supermodular degree are bounded. In particular, we prove that simple games admit efficient algorithms for various solution concepts when the supermodular degree is small; further, we show that computing the Shapley value is always in FPT with respect to the dependency degree. Finally, we note that, while determining the dependency among players is computationally hard, there are efficient algorithms for special classes of games.Comment: 10 pages, full version of accepted AAAI-18 pape

    Forming Probably Stable Communities with Limited Interactions

    Full text link
    A community needs to be partitioned into disjoint groups; each community member has an underlying preference over the groups that they would want to be a member of. We are interested in finding a stable community structure: one where no subset of members SS wants to deviate from the current structure. We model this setting as a hedonic game, where players are connected by an underlying interaction network, and can only consider joining groups that are connected subgraphs of the underlying graph. We analyze the relation between network structure, and one's capability to infer statistically stable (also known as PAC stable) player partitions from data. We show that when the interaction network is a forest, one can efficiently infer PAC stable coalition structures. Furthermore, when the underlying interaction graph is not a forest, efficient PAC stabilizability is no longer achievable. Thus, our results completely characterize when one can leverage the underlying graph structure in order to compute PAC stable outcomes for hedonic games. Finally, given an unknown underlying interaction network, we show that it is NP-hard to decide whether there exists a forest consistent with data samples from the network.Comment: 11 pages, full version of accepted AAAI-19 pape

    Multiwinner Elections with Diversity Constraints

    Full text link
    We develop a model of multiwinner elections that combines performance-based measures of the quality of the committee (such as, e.g., Borda scores of the committee members) with diversity constraints. Specifically, we assume that the candidates have certain attributes (such as being a male or a female, being junior or senior, etc.) and the goal is to elect a committee that, on the one hand, has as high a score regarding a given performance measure, but that, on the other hand, meets certain requirements (e.g., of the form "at least 30%30\% of the committee members are junior candidates and at least 40%40\% are females"). We analyze the computational complexity of computing winning committees in this model, obtaining polynomial-time algorithms (exact and approximate) and NP-hardness results. We focus on several natural classes of voting rules and diversity constraints.Comment: A short version of this paper appears in the proceedings of AAAI-1

    Computational Complexity of the Average Covering Tree Value

    Get PDF
    In this paper we prove that calculating the average covering tree valuerecently proposed as a single-valued solution of graph games is #P-complete

    Average Tree Solution and Core for Cooperative Games with Graph Structure

    Get PDF
    This paper considers cooperative transferable utility games with graph structure,called graph games. A graph structure restricts the set of possible coalitions of players, so thatplayers are able to cooperate only if they are connected in the graph. Recently the average treesolution has been proposed for arbitrary graph games by Herings et al. The average tree solutionis the average of some specific marginal contribution vectors, and was shown to belong to the coreif the game exhibits link-convexity. In this paper the main focus is placed on the relationshipbetween the core and the average tree solution, and the following results were obtained. Firstly,it was shown that some marginal contribution vectors do not belong to the core even though thegame is link-convex. Secondly, an alternative condition to link-convexity was given. Thirdly, itwas proven that for cycle-complete graph games the average tree solution is an element of thecore if the game is link-convex

    Keeping the Harmony Between Neighbors: Local Fairness in Graph Fair Division

    Full text link
    We study the problem of allocating indivisible resources under the connectivity constraints of a graph GG. This model, initially introduced by Bouveret et al. (published in IJCAI, 2017), effectively encompasses a diverse array of scenarios characterized by spatial or temporal limitations, including the division of land plots and the allocation of time plots. In this paper, we introduce a novel fairness concept that integrates local comparisons within the social network formed by a connected allocation of the item graph. Our particular focus is to achieve pairwise-maximin fair share (PMMS) among the "neighbors" within this network. For any underlying graph structure, we show that a connected allocation that maximizes Nash welfare guarantees a (1/2)(1/2)-PMMS fairness. Moreover, for two agents, we establish that a (3/4)(3/4)-PMMS allocation can be efficiently computed. Additionally, we demonstrate that for three agents and the items aligned on a path, a PMMS allocation is always attainable and can be computed in polynomial time. Lastly, when agents have identical additive utilities, we present a pseudo-polynomial-time algorithm for a (3/4)(3/4)-PMMS allocation, irrespective of the underlying graph GG. Furthermore, we provide a polynomial-time algorithm for obtaining a PMMS allocation when GG is a tree.Comment: Full version of paper accepted for presentation at AAMAS 202
    • …
    corecore