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AVERAGE TREE SOLUTION AND CORE FOR COOPERATIVE GAMES

WITH GRAPH STRUCTURE

AYUMI IGARASHI AND YOSHITSUGU YAMAMOTO

Abstract. This paper considers cooperative transferable utility games with graph structure,

called graph games. A graph structure restricts the set of possible coalitions of players, so that

players are able to cooperate only if they are connected in the graph. Recently the average tree

solution has been proposed for arbitrary graph games by Herings et al. The average tree solution

is the average of some specific marginal contribution vectors, and was shown to belong to the core

if the game exhibits link-convexity. In this paper the main focus is placed on the relationship

between the core and the average tree solution, and the following results were obtained. Firstly,

it was shown that some marginal contribution vectors do not belong to the core even though the

game is link-convex. Secondly, an alternative condition to link-convexity was given. Thirdly, it

was proven that for cycle-complete graph games the average tree solution is an element of the

core if the game is link-convex.

1. Introduction

In many settings of cooperative games players gain more benefits by cooperating rather than

by acting on their own. A subgroup of players is called a coalition and the total profit they

can obtain from cooperation is called its worth. If the players are able to divide the worth of a

coalition(transferable utility), there arises a question of how to allocate the worth to each player.

A classical set-valued solution is the core, the set of payoff vectors which satisfy the following

conditions. First, the worth of the whole set of players (the grand coalition) is distributed among

the players (efficiency),
∑

i∈N

xi = v(N).

Next, no coalition receives less than its worth (non-domination),

∑

i∈S

xi ≥ v(S), for all S ⊆ N with S #= ∅.

If a payoff vector is an element of the core, no coalitions can do better than that by their own.

Thus, the payoff vector prevents the collapse of the grand coalition. The core, however, has two

possible problems: it might be empty, and it might contain many elements. To overcome this

problem, several single-valued solutions have been introduced.

The Shapley value is the most well-known single-valued solution, see Shapley [10]. At the

Shapley value each player is promised the average of all his marginal contributions to any coalition
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that he joins. The Shapley value is an element of the core if the game exhibits convexity. However, it

is not always true that any coalition S can form and achieve worth v(S). In many cases cooperation

among players rely on their communication structure.

We study cooperative games with limited communication structure represented by an undirected

graph. These so-called graph games were introduced by Myerson [8]. A group of players is only

able to cooperate if they are connected in the graph. The best known single-valued solution for

such games is the Myerson value, which is characterized by efficiency and fairness. The Myerson

value coincides with the Shapley value when the underlying graph is complete. Van den Nouweland

and Borm [7] showed that the Myerson value lies in the core if the game exhibits convexity and

the underlying graph is cycle-complete.

Herings et al. [5] proposed the average tree solution on the class of cycle-free graph games.

The average tree solution is the average of marginal contribution vectors over a set of rooted

spanning trees. Herings et al. proved that the corresponding solution is in the core if the game

exhibits superadditivity, while the Myerson value or the position value may not. The condition of

superadditivity was relaxed to a weaker one by Talman and Yamamoto [12].

In Herings et al. [6] the average tree solution was generalized for the class of arbitrary graph

games. They constructed a specific set of rooted spanning trees, called admissible spanning trees.

The generalized average tree solution coincides with the Shapley value when the underlying graph

is complete and with the average tree solution as defined by Herings et al. [5] when the underly-

ing graph is cycle-free. They also introduced the notion of link-convexity for graph games. For

games with complete graph, link-convexity coincides with convexity, but in general the condition

is weaker than convexity. For games with a cycle-free graph, link-convexity is even weaker than

superadditivity. Herings et al. also claimed that the average tree solution is in the core if the game

is link-convex. Baron et al. [1] defined the average tree solution with respect to trees constructed

by Depth First Search (DFS) and Breadth First Search (BFS). When the underlying graph is

complete, the average tree solution with respect to DFS trees coincides with the Shapley value and

the solution with respect to BFS trees yields the equal surplus division.

In this paper we discuss the relationship between the core and the average tree solution. We first

show that some link-convex graph games have some marginal vectors not in the core. Secondly,

we refine link-convexity to the condition that ensures the average tree solution belongs to the core

in arbitrary graph games. Thirdly, we prove that for the class of cycle-complete graph games

satisfying link-convexity the average tree solution is an element of the core.

This paper is organized as follows. Section 2 is a preliminary section on games with graph

structure. Section 3 introduces the average tree solution for arbitrary games with graph structure.

Section 4 relates the average tree solutions to the core. Section 5 gives some conclusions.
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2. TU-games with communication structure

We consider cooperative transferable utility games with graph structure, called graph games

introduced by Myerosn [8]. A graph game is represented by a triple (N, v, L) where N is a set

of n players, v : 2N → R a characteristic function that assigns the worth to coalitions, and

L ⊆ { {i, j} | i #= j, i, j ∈ N } is a collection of communication links between players. The pair

(N,L) is called an undirected graph with N the set of nodes, being the players of the game, and

L the collection of edges (links) between the nodes. In case L = { {i, j} | i #= j, i, j ∈ N } the

game {N, v, L} is said to have full communication structure and is simply denoted by (N, v). A

payoff vector x ∈ Rn is an n-dimensional vector giving payoff xi to player i ∈ N . For simplicity

we denote x(S) =
∑

i∈S xi for S ∈ 2N .

Next we give several notations for an undirected graph. For a graph (N,L) and a subset K ⊆ N ,

the set L(K) is given by

L(K) = { {i, j} ∈ L | i, j ∈ K }.

A sequence of different nodes P = {i1, i2, . . . , im} is a path from i1 to im in the graph (K,L(K))

if {ik, ik+1} ∈ L(K) for all k ∈ {1, 2, . . . ,m − 1}. The path P is denoted by i1 ∼K im, where

i1 ∼ im stands for a path in (N,L). Two nodes i, j ∈ N are connected in (K,L(K)) if either

i = j or there exists a path i ∼K j. For a path P = {i1, i2, . . . , im} the number, m − 1, is said

to be the length of P . A path between i1 and im is shortest if the length is minimal among all

paths connecting i1 to im. A graph (N,L) is connected if any two nodes i, j ∈ N are connected

in (N,L). A subset of nodes K ⊆ N is said to be a connected subset of N when the subgraph

(K,L(K)) is connected. The collection of all connected subsets of K in (K,L(K)) is denoted by

CL(K), i.e., CL(K) := {S | S ⊆ K is a connected subset of K }. A subset K ′ of K is called a

connected component of (K,L(K)) if K ′ is maximally connected, that is, K ′ is connected but the

set K ′ ∪ {j} is not connected for any j ∈ K \K ′. The collection of all connected components of

(K,L(K)) is denoted by ĈL(K), i.e., ĈL(K) := {S | S ⊆ K is a connected component of K }. A

sequence of nodes {i1, i2, . . . , im} is called a cycle in a graph (N,L) if

(i) m ≥ 3,

(ii) all nodes i1, i2, . . . , im are different,

(iii) im+1 = i1,

(iv) {ik, ik+1} ∈ L for k = 1, 2, . . . ,m.

A graph is said to be a tree if it is connected and does not contain any cycle. A spanning tree of

(N,L) is a tree containing all the nodes N . A graph is said to be cycle-free when it does not contain

any cycle. A graph is said to be complete when any two of its nodes are connected by an edge. A

graph is said to be cycle-complete if the following holds: if {i1, i2, . . . , im, i1} is a cycle in the graph (N,L)

then {ik, ih} ∈ L for all distinct k, h ∈ {1, 2, . . . ,m}. Since a cycle-free graph does not contain any
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cycle, they trivially satisfy the requirement of cycle-completeness. The class of complete graphs is

another class of graphs that are cycle-complete.

In this paper it is assumed without loss of generality that in a graph game (N, v, L), (N,L) is

always connected in the graph (N,L), i.e., N ∈ CL(N). We also assume that players of a coalition

S ∈ 2N are able to cooperate only if all players of S can communicate directly or indirectly with

each other, i.e., S ∈ CL(N). For S ∈ CL(N), the worth v(S) is the maximum amount of payoff a

coalition S can obtain for its players.

Superadditivity and convexity are defined below, referring the definitions in Talman and Ya-

mamoto [12]. Convexity of (N, v, L), however, is originally defined in this paper.

! (N, v) is superadditive if

v(S) + v(T ) ≤ v(S ∪ T )

for all S, T ∈ 2N satisfying S ∩ T = ∅.

! (N, v, L) is superadditive if

v(S) + v(T ) ≤ v(S ∪ T )

for all S, T ∈ CL(N) satyisfying S ∪ T ∈ CL(N) and S ∩ T = ∅.

! (N, v) is convex if

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T )

for all S, T ∈ 2N .

It is equivalent to

v(S)− v(S ∪ {i}) ≤ v(T )− v(T ∪ {i})

for all S, T ⊆ N \ {i} satyisfying S ⊆ T.

! (N, v, L) is convex if

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T )

for all S, T ∈ CL(N) satyisfying S ∪ T ∈ CL(N) and S ∩ T ∈ CL(N) ∪ {∅}.

For a graph game (N, v, L) a payoff vector x is said to be efficient if x(N) = v(N). The core,

denoted by Core(N, v, L), of a graph game (N, v, L) is the set of efficient payoff vectors that are

not dominated through any connected coalition,

Core(N, v, L) := {x ∈ Rn | x(N) = v(N) and x(S) ≥ v(S) for all S ∈ CL(N) }.
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The core of a game (N, v) with full communication is denoted by Core(N, v), i.e.,

Core(N, v) := {x ∈ Rn | x(N) = v(N) and x(S) ≥ v(S) for all S ∈ 2N }.

Given a graph game (N, v, L), Myerson [8] defined the restricted game (N, vL) as

vL(S) =
∑

T∈ĈL(S)

v(T ), for S ∈ 2N .

Notice that the core of a graph game Core(N, v, L) equals the core Core(N, vL) of the restricted

game (N, vL) with full communication.

3. The average tree solution

In this section we provide two definitions of the average tree solution, the solution given by

Herings et al. [6] and the solution constructed by Depth First Search algorithm. To describe the

average tree solution we first give some definitions of directed graph.

3.1. Definition of directed graph. A graph (N,A) is directed if A ⊆ N ×N , i.e., A is a set of

ordered pairs of nodes. An ordered pair of nodes is called an arc. For a graph (N,A) a sequence

{i1, i2, . . . , im} is a directed path if (ik, ik+1) ∈ A for all k ∈ {1, 2, . . . ,m− 1}. For A ⊆ N ×N let

L(A) = { {i, j} | (i, j) ∈ A }, i.e., undirected version of A. A directed graph (K,T ) is said to be

a rooted tree if the undirected graph (K,L(T )) induced by T is a tree and each node has at most

one arc entering the node. Clearly, a rooted tree has exactly one node that no arc enters, which is

called the root, and there is a unique directed path from the root to every node. A rooted spanning

tree (N,T ) is a rooted tree containing all the nodes N . For a given rooted spanning tree (N,T )

and a subset K ⊆ N , the set T (K) is given by

T (K) := { (i, j) ∈ T | i, j ∈ K }.

For a given rooted spanning tree (N,T ), for each node i ∈ N we define its sets of successors and

descendants as

sucT (i) = { j ∈ N | (i, j) ∈ T },

desT (i) = { j ∈ N | j = i or there is a directed path from i to j in (N,T ) },

respectively. A node j ∈ N is said to be an ancestor of i ∈ N if j #= i and there is a directed path

from j to i.

3.2. Admissible coalitions. To generalize the average tree solution to the class of arbitrary graph

games, Herings et al. [6] consider a collection of admissible coalitions constructed as follows.

Definition 3.1 (Admissible Coalitions). For a graph (N,L), B = {B1, B2, . . . , Bn} of n subsets

of N is a collection of admissible coalitions if it satisfies the following conditions:
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(i) For all i ∈ N , i ∈ Bi, and for some j ∈ N , Bj = N ;

(ii) For all i ∈ N and K ∈ ĈL(Bi \ {i}), K = Bj and {i, j} ∈ L for some j ∈ N .

Definition 3.2. For a graph (N,L), let B = {B1, B2, . . . , Bn} be a collection of admissible coali-

tions. Define the directed graph (N,TB) as

TB := { (i, j) | i, j ∈ N,Bj ∈ ĈL(Bi \ {i}) }.

According to Lemma 3.2 in Herings et al. [6] the above collection of admissible coalitions B has

the following property.

Lemma 3.3 ([6]). For a graph (N,L), let B = {B1, B2, . . . , Bn} be a collection of admissible

coalitions. Then, (N,TB) is a rooted spanning tree.

We denote the collection of the rooted spanning trees of Definition 3.2 by BADM. Herings et

al. [6] defined their average tree solution with respect to the rooted spanning tree of BADM.

Definition 3.4. For a graph game (N, v, L), the marginal contribution vector yT ∈ Rn corre-

sponding to T ∈ BADM is the vector of payoffs given by

(3.1) yTi = v(Bi)−
∑

K∈Ĉ(Bi\{i})

v(K), i ∈ N.

According to Herings et al. [6], the average tree solution is defined as follows.

Definition 3.5 (Herings et al. [6]). On the class of arbitrary graph games (N, v, L), the average

tree solution is defined by

(3.2) ȳ =
1

|BADM|
∑

T∈BADM

yT .
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3.3. Depth First Search Tree. Now we introduce a tree growing algorithm, called Depth First

Search(DFS), and define the average tree solution based on the collection of rooted spanning trees

constructed by DFS. We prove that the set BDFS of thus obtained rooted spanning trees is always

a subset of BADM.

The psudocode of DFS is presented as follows.

Algorithm 1 Depth First Search

Input: a connected graph G = (N,L)
Output: a spanning tree of G with predecessor function p, and two time functions d and f
1: k ← 0, S ← ∅
2: choose any node r (as root)
3: k ← k + 1
4: colour r black
5: set d(r) := k
6: add r to S
7: while S is nonempty do
8: consider the top node i of S
9: k ← k + 1

10: if i has an uncoloured neighbour j then
11: colour j black
12: set p(j) := x and d(j) := k
13: add j to the top of S
14: else
15: set f(i) := k
16: remove i from S
17: end if
18: end while
19: return (p, d, f)

The DFS procedure computes the predecessor function p and two time functions, the discovery

time function d and the finishing time function f . The function p forms the subgraph (N,T ),

where

T = { (u, v) | u = p(v), v ∈ N \ {r} }.

Since it is assumed that (N,L) is connected, the resulting graph (N,T ) is a rooted spanning tree,

called a depth first search tree (DFS tree for short). Several properties of DFS tree are given here.

Lemma 3.6. For a graph (N,L), let T ∈ BDFS and S ∈ CL(N). Let v1 be the first node discovered

by DFS in S. Then it follows that

(3.3) desT (v) ⊆ desT (v1) for all v ∈ S \ {v1}.

Proof. It holds from the construction of DFS tree. !

Theorem 3.7. For a graph (N,L), let BDFS be the collection of rooted spanning trees of (N,L)

constructed by DFS. Let BADM be the collection of rooted spanning trees of Definition 3.2. Then it
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follows that

BDFS ⊆ BADM.

Proof. Consider any T ∈ BDFS. We will prove that the collection of descendants for each node

i ∈ N , B = {desT (1), desT (2), . . . , desT (n)}, satisfies the conditions (i) and (ii) of Definition 3.1.

From the definition of a descendant, i ∈ desT (i) for all i ∈ N . Since (N,T ) is a rooted spanning

tree there exists a root r such that desT (r) = N . Hence, condition (i) is satisfied. Condition (ii) also

holds since for all i ∈ N and K ∈ ĈL(desT (i)\{i}), there exists a node j ∈ sucT (i) such that K =

desT (j) and {i, j} ∈ L. Thus concludes that B = {desT (1), desT (2), . . . , desT (n)} is a collection

of admissible coalitions.

Now, let T ′ := { (i, j) | i, j ∈ N, desT (j) ∈ ĈL(desT (i) \ {i}) }. Then it follows that T = T ′.

Therefore, T ∈ BADM. !

The average tree solution over a set of DFS trees is defined as follows.

Definition 3.8. For a graph game (N, v, L), the marginal contribution vector xT ∈ Rn corre-

sponding to T ∈ BDFS is the vector of payoffs given by

(3.4) xT
i = v(desT (i))−

∑

K∈Ĉ(desT (i)\{i})

v(K), i ∈ N.

Definition 3.9 (Average Tree Solution). On the class of arbitrary graph games (N, v, L), the

average tree solution constructed by DFS is given by

(3.5) x̄ =
1

|BDFS|
∑

T∈BDFS

xT .

To distinguish from the average tree solution of Definition 3.5, the average tree solution con-

structed by DFS is denoted by x̄.

4. Average Tree Solutions and the Core

This section studies conditions for graph games such that average tree solutions belong to the

core. We first introduce link-convexity given by Herings et al. [6] and present an alternative

condition for arbitrary graph games to make the average tree solution be in the core. Next we

give the class of graph games such that link-convexity ensures that the average tree solution is an

element of the core.

4.1. Link-convexity.

Definition 4.1 (Link-convexity). (N, v, L) is link-convex if

(4.1) v(S) + v(T ) ≤ v(S ∪ T ) +
∑

K∈ĈL(S∩T )

v(K)

for all S, T ∈ CL(N) that satisfy
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(LC1) S \ T ∈ CL(N) and T \ S ∈ CL(N)

(LC2) (S \ T ) ∪ (T \ S) ∈ CL(N)

(LC3) N \ S ∈ CL(N) or N \ T ∈ CL(N).

It was shown in Herings et al. [6] that for games on a complete graph link-convexity and convexity

coincides with each other and that for games on a cycle-free graph link-convexity is even weaker

than superadditivity.

Concerning arbitrary graph games satisfying link-convexity the following is claimed in Herings

et al. [6].

Claim 4.2 (Herings et al. [6]). Let (N, v, L) be a link-convex game. Then, the average tree solution

ȳ is an element of the core.

Herings et al. [6] proved Claim 4.2 by showing that all the marginal contribution vectors of

Definition 3.4 are in the core of the game, i.e.,

(4.2) yT ∈ Core(N, v, L) for all T ∈ BADM.

From the above, ȳ ∈ Core(N, v, L) holds since the core is a convex set.

We give here an example of link-convex game and its marginal contribution vectors yT ∈ Rn.

Example 4.3. Consider the graph game withN := {1, 2, 3, 4, 5} and L := {{1, 2}, {1, 4}, {2, 3}, {3, 4}, {4, 5}}

in Figure 1. The characteristic function values are given by

v({1}) = 0 v({1, 4}) = 1 v({1, 2, 4}) = 1 v({1, 2, 3, 4}) = 10

v({2}) = 0 v({2, 3}) = 6 v({1, 3, 4}) = 2 v({1, 2, 3, 5}) = 7

v({3}) = 0 v({3, 4}) = 1 v({1, 4, 5}) = 7 v({1, 2, 4, 5}) = 7

v({4}) = 0 v({3, 5}) = 6 v({2, 3, 4}) = 9 v({1, 3, 4, 5}) = 13

v({5}) = 0 v({4, 5}) = 1 v({2, 3, 5}) = 6 v({2, 3, 4, 5}) = 9

v({1, 2}) = 1 v({1, 2, 3}) = 6 v({3, 4, 5}) = 7 v({1, 2, 3, 4, 5}) = 19

v({1, 3}) = 0 v({1, 5}) = 0 v({1, 2, 4}) = 0 v({1, 2, 5}) = 0

v({2, 4}) = 0 v({2, 5}) = 0 v({1, 3, 5}) = 0 v({2, 4, 5}) = 0

It is a routine to see that this graph game is link-convex.
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Figure 1. counter graph

Consider a tree T1 := {(1, 2), (2, 3), (3, 5), (5, 4)} ∈ BADM in Figure 2. We obtain the corre-

sponding marginal contribution vector as follows.

yT1
1 = v({1, 2, 3, 4, 5})− v({2, 3, 4, 5}) = 19− 9 = 10

yT1
2 = v({2, 3, 4, 5})− v({3, 4, 5}) = 9− 7 = 2

yT1
3 = v({3, 4, 5})− v({4, 5}) = 7− 1 = 6

yT1
4 = v({4}) = 0

yT1
5 = v({4, 5})− v({4}) = 1− 0 = 1.

Then we have

yT1({2, 3, 4}) = yT1
2 + yT1

3 + yT1
4 = 2 + 6 + 0 = 8 < v({2, 3, 4}) = 9.

It follows that

yT1 #∈ Core(N, v, L).

Similarly let T2 := {(2, 1), (1, 4), (4, 5), (5, 3)} ∈ BADM in Figure 3 and the corresponding marginal

contribution vector is as follows.

yT2
1 = v({1, 3, 4, 5})− v({3, 4, 5}) = 13− 7 = 6

yT2
2 = v({1, 2, 3, 4, 5})− v({1, 3, 4, 5}) = 19− 13 = 6

yT2
3 = v({3}) = 0

yT2
4 = v({3, 4, 5})− v({3, 5}) = 7− 6 = 1

yT2
5 = v({3, 5})− v({3}) = 6− 0 = 6.

Then we have

yT2({2, 3, 4}) = yT2
2 + yT2

3 + yT2
4 = 6 + 0 + 1 = 7 < v({2, 3, 4}) = 9,
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hence

yT2 #∈ Core(N, v, L).

These vectors are counter-examples to the statement (4.2).

2

5

43

1

Figure 2. T1

2

5

43

1

Figure 3. T2

4.2. Revised link-convexity. The next condition should replace to link-convexity for the average

tree solution to lie in the core.

Definition 4.4 (Revised link-convexity). (N, v, L) is revised link-convex if

(4.3) v(S) + v(T ) ≤ v(S ∪ T ) +
∑

K∈ĈL(S∩T )

v(K)

for all S, T ∈ CL(N) that satisfy

(RL1) S \ T ∈ CL(N) or T \ S ∈ CL(N)

(RL2) S ∪ T ∈ CL(N)

(RL3) N \ S ∈ CL(N) or N \ T ∈ CL(N).

If S, T ∈ CL(N) satisfy (LC1) and (LC2), these two sets also satisfy (RL2). Additionally, it is

clear that (RL1) is a weaker condition of (LC1) and (RL3) coincides with (LC3). Thus in general

revised link-convexity is a stronger condition than link-convexity.

Theorem 4.5. Let (N, v, L) be a revised link-convex game. Then, the average tree solution x̄ is

an element of the core.

Proof. Since the core is a convex set, it suffices to prove that for every T ∈ BDFS the marginal

vector xT with respect to tree T ∈ BDFS is an element of the core, i.e.,

xT ∈ Core(N, v, L) for all T ∈ BDFS.

Take any tree T ∈ BDFS and let xT be the corresponding marginal contribution vector. We will

show that

xT (S) ≥ v(S) for all S ∈ CL(N),
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from which it follows that xT ∈ Core(N, v, L). Take any S ∈ CL(N). The subgraph (S, T (S)) has

components S1, S2, . . . , Sm, which are all rooted trees with roots r1, r2, . . . , rm. Let r1, r2, . . . , rm

be indexed such that

(4.4) m1 < m2 ⇒ des(rm1) ⊆ des(rm2) or des(rm1) ∩ des(rm2) = ∅.

For k = 0, . . . ,m, let Dk := des(r1)∪ des(r2)∪ · · ·∪ des(rk), with the convention that D0 = ∅. For

k = 0, . . . ,m, those successors of Sk in the tree T that lie outside S are denoted by δ(Sk) := { i |

(j, i) ∈ T, j ∈ Sk, i #∈ Sk} = {i1, i2, . . . , il }. We write R := {r1, r2, . . . , rm} and I :=
⋃m

k=1 δ(Sk).

For a node i ∈ I we define ∆(i) := { r ∈ R | des(r) ⊆ des(i) }, ∆∗(i) := { r ∈ R | des(r) ⊆

des(i), "r′ ∈ R \ {r} s.t. des(r) ⊆ des(r′) ⊆ des(i) }. Note that
⋃

r∈∆(i) des(r) =
⋃

r∈∆∗(i) des(r).

For i ∈ N we simply denote Di := des(i). Consider some k ∈ {1, 2, . . . ,m} and suppose

δ(Sk) #= ∅. Take any ih ∈ δ(Sk) and the following two sets

U := S ∪Dk−1 ∪Di1 ∪Di2 ∪ · · · ∪Dih−1

W := Dih .

Then U,W ∈ CL(N) and satisfy the following three conditions of Definition 4.4.

(RL1) W \ U = Dih \ (
⋃

r∈∆(ih)
Dr) = Dih \ (

⋃
r∈∆∗(ih)

Dr) ∈ CL(N)

(RL2) U ∪W = S ∪Dk−1 ∪Di1 ∪Di2 ∪ · · · ∪Dih−1 ∪Dih ∈ CL(N)

(RL3) N \W = N \Dih ∈ CL(N).

Now it follows from revised link-convexity that for ih ∈ {i1, i2, . . . , il},

v(S ∪Dk−1 ∪ (Di1 ∪Di2 ∪ · · · ∪Dih−1)) + v(Dih)

≤ v(S ∪Dk−1 ∪Di1 ∪Di2 ∪ · · · ∪Dih−1 ∪Dih) +
∑

r∈∆∗(ih)

v(Dr)

By repeated application of this argument, it follows that

(4.5) v(S ∪Dk−1) +
∑

i∈δ(Sk)

v(Di) ≤ v(S ∪Dk) +
∑

i∈δ(Sk)

∑

r∈∆∗(i)

v(Dr).

Notice that this formula (4.5) is also valid if δ(Sk) = ∅, since S ∪ Dk−1 = S ∪ Sk ∪ Dk−1 =

S ∪Drk ∪Dk−1 = S ∪Dk. By repeated application of the last inequality (4.5), we see that

(4.6) v(S) +
m∑

k=1

∑

i∈δ(Sk)

v(Di) ≤ v(S ∪Dm) +
m∑

k=1

∑

i∈δ(Sk)

∑

r∈∆∗(i)

v(Dr).

Recall that rm is the first node discovered by Depth First Search in S. From lemma 3.6, it

follows that

Dr ⊆ Drm for all r ∈ R \ {rm}.
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Hence, every Drk for k = 1, 2, . . .m− 1 appears exactly once in the right-hand side, i.e.,

m∑

k=1

∑

i∈δ(Sk)

∑

r∈∆∗(i)

v(Dr) =
m−1∑

k=1

v(Drk).

Since v(S ∪Dm) = v(Drm), we obtain

v(S ∪Dm) +
m∑

k=1

∑

i∈δ(Sk)

∑

r∈∆∗(i)

v(Dr) =
m∑

k=1

v(Drk).

Therefore,

(4.8) ⇔ v(S) +
m∑

k=1

∑

i∈δ(Sk)

v(Di) ≤
m∑

k=1

v(Drk)

⇔ v(S) ≤
m∑

k=1

(v(Drk)−
∑

i∈δ(Sk)

v(Di)) =
m∑

k=1

xT (Sk) = xT (S).

!

Corollary 4.6. Let (N, vL) be a convex game. Then, the average tree solution x̄ is an element

of the core.

Proof. Let S, T ∈ CL(N) satisfy the conditions (RL1)～(RL3) of revised link-convexity. Convexity

of (N, vL) implies that

vL(S) + vL(T ) ≤ vL(S ∪ T ) + vL(S ∩ T )

⇔ v(S) + v(T ) ≤ v(S ∪ T ) +
∑

K∈ĈL(S∩T )

v(K).

Thus the game (N, v, L) is revised link-convex. It immediately follows from Theorem 4.5 that the

average tree solution is an element of the core. !

4.3. Cycle-complete graph. As we have seen in the previous section, for arbitrary graph games

link-convexity is not a sufficient condition to make all the marginal contribution vectors lie in the

core. In this section we consider games on the class of cycle-complete graphs, which includes the

class of cycle-free and complete graphs. It will be proved that the marginal contribution vectors

belong to the core for arbitrary cycle-complete graph games satisfying link-convexity.

4.3.1. Convexity on cycle-complete graph games. Van den Nouweland and Borm [7] presented that

convexity of (N, v) is a necessary and sufficient condition for convexity of (N, vL). We prove

that convexity of (N, v, L) is a necessary and sufficient condition for convexity of (N, vL) when the

underlying graph is cycle-complete, following the proof given by Van den Nouweland and Borm [7].

Theorem 4.7. Let (N,L) be a cycle-complete graph. (N, v, L) is a convex game if and only if

(N, vL) is convex.
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Proof. Suppose that (N, v, L) is convex. Let S, T ∈ CL(N) be such that S∪T ∈ CL(N) and S∩T ∈

CL(N) ∪ {∅}. Then, from convexity of (N, v, L), it holds that

vL(S) + vL(T ) ≤ vL(S ∪ T ) + vL(S ∩ T )

⇔ v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ).

For the converse part, suppose (N, vL) is convex. Let i ∈ N and S ⊆ T ⊆ N \ {i}. It suffices to

show that vL(S ∪ {i})− vL(S) ≤ vL(T ∪ {i})− vL(T ), i.e.,

(4.7)
∑

K∈ĈL(S∪{i})

v(K)−
∑

K∈ĈL(S)

v(K) ≤
∑

K∈ĈL(T∪{i})

v(K)−
∑

K∈ĈL(T )

v(K).

Now, let E denote the set of connected components containing at least one node j with {i, j} ∈ L,

i.e.,

E := { E ∈ ĈL(S) | ∃j ∈ E s.t. {i, j} ∈ L },

and let Ei := {i}∪
⋃

E∈E E. By definition, we have Ei ∈ ĈL(S∪{i}), and for every E ∈ ĈL(S∪{i})

such that E #= Ei it holds that E ∈ CL(S). As a consequence, we obtain

∑

E∈ĈL(S∪{i})

v(E)−
∑

E∈ĈL(S)

v(E) = v({i} ∪ (
⋃

E∈E
E))−

∑

E∈E
v(E).

Similarly, we have

∑

F∈ĈL(T∪{i})

v(F )−
∑

F∈ĈL(T )

v(F ) = v({i} ∪ (
⋃

F∈F
F ))−

∑

F∈F
v(F ),

where F := {F ∈ ĈL(T ) | ∃j ∈ F s.t. {i, j} ∈ L }. Hence, (4.7) is equivalent to

v({i} ∪ (
⋃

E∈E
E))−

∑

E∈E
v(E) ≤ v({i} ∪ (

⋃

F∈F
F ))−

∑

F∈F
v(F ).

Next we will consider the relationship between the set E and F . Since S ⊆ T , there exists a

unique F ∈ F with E ⊆ F , for all E ∈ E . Here, we will show that for each F ∈ F ,

∃!E ∈ E s.t. E ⊆ F, or "E ∈ E s.t. E ⊆ F.

Assume that there are E1, E2 ∈ E(E1 #= E2) and F ′ ∈ F such that E1 ⊆ F ′ and E2 ⊆ F ′. Let

j1 ∈ E1 and j2 ∈ E2 be such that {i, j1} ∈ L and {i, j2} ∈ L. Note that {j1, j2} #∈ L since E1 and

E2 are connected components of S, respectively. Since j1, j2 ∈ F ′ ∈ ĈL(T ), there exists a path

j1 ∼F ′ j2. Since i #∈ T , there is a cycle from i to i over j1 and j2 in (N,L). However, since a graph

(N,L) is cycle-complete this should imply that {j1, j2} ∈ L, which leads to a contradiction. Hence

we can number the elements of E and F as follows:

E = {E1, E2, . . . , Es} and F = {F1, F2, . . . , Ft},
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where t ≥ s and Ek ⊆ Fk for all k ∈ {1, 2, ..., s}.

Now, we can use the properties of the game (N, v, L). For all k = s+1, s+2, . . . , t, Fk ∈ CL(N),

{i}∪(
⋃s

h=1 Fh) ∈ CL(N) and {i}∪(
⋃t

h=1 Fk) ∈ CL(N). Moreover, (N, v, L) is superadditive when

(N, v, L) is convex. Superadditivity of the game (N, v, L) implies

(4.8) v({i} ∪ (
⋃

F∈F
F )) ≥ v({i} ∪ (

s⋃

h=1

Fh)) +
t∑

h=s+1

v(Fh).

For all k = 1, 2, . . . , s,

Fk ∈ CL(N),

{i} ∪ (
s⋃

h=k+1

Fh) ∪ (
k⋃

h=1

Eh) ∈ CL(N),

Fk ∩ ({i} ∪ (
s⋃

h=k+1

Fh) ∪ (
k⋃

h=1

Eh)) = Ek ∈ CL(N) and

Fk ∪ ({i} ∪ (
s⋃

h=k+1

Fh) ∪ (
k⋃

h=1

Eh)) = {i} ∪ (
s⋃

h=k

Fh) ∪ (
k−1⋃

h=1

Eh) ∈ CL(N).

Convexity of the game (N, v, L) implies

v({i} ∪ (
s⋃

h=1

Fh))− v(F1) ≥ v({i} ∪ (
s⋃

h=2

Fh) ∪ E1)− v(E1)

...

v({i} ∪ (
s⋃

h=k

Fh) ∪ (
k−1⋃

h=1

Eh))− v(Fk) ≥ v({i} ∪ (
s⋃

h=k+1

Fh) ∪ (
k⋃

h=1

Eh))− v(Ek)

...

v({i} ∪ Fs ∪ (
s−1⋃

h=1

Eh))− v(Fs) ≥ v({i} ∪ (
s⋃

h=1

Eh))− v(Es).

Adding all these s inequalities, we obtain

v({i} ∪ (
s⋃

h=1

Fh))−
s∑

h=1

v(Fh) ≥ v({i} ∪ (
⋃

E∈E
E))−

∑

E∈E
v(E).(4.9)

Now, (4.8) and (4.9) readily imply (4.7). !

Theorem 4.8. Let (N,L) be a cycle-complete graph and let (N, v, L) be a convex game. Then

(N, v, L) is link-convex.

Proof. Let S, T ∈ CL(N) satisfy (LC1)～(LC3) of Definition 4.1. When S ∩ T = ∅, S ∪ T =

(S \T )∪ (T \S) ∈ CL(N). When S ∩T #= ∅, clearly S ∪T ∈ CL(N) because S, T ∈ CL(N). Now,
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assume that S ∩ T #∈ CL(N), i.e.,

(4.10) ∃i1, i2 ∈ S ∩ T such that "path i1 ∼S∩T i2.

Since i1, i2 ∈ S ∈ CL(N),

∃path i1 ∼S i2

Let PS be the shortest path among the above paths. Since i1, i2 ∈ T ∈ CL(N),

∃path i1 ∼T i2

Let PT be the shortest path among the above paths. By assumption (4.10), PS has at least one

node in S \ T and PT has at least one node in T \ S. Thus PS and PT are different. Let ρ(i1, i2)

denote the sum of the lengths of PS and PT . Let i∗1, i
∗
2 ∈ S ∩ T be such that

ρ(i∗1, i
∗
2) = min{ ρ(i1, i2) | i1, i2 ∈ S ∩ T, " path i1 ∼S∩T i2 }.

For i∗1 and i∗2, the corresponding PS and PT form a cycle. By the assumption that (N,L) is a

cycle-complete graph, there exists a edge between any two nodes in the cycle. Thus, {i∗1, i∗2} ∈ L,

which leads to a contradiction and we conclude that S ∩ T ∈ CL(N). Convexity of the game

(N, v, L) implies that v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) = v(S ∪ T ) +
∑

K∈ĈL(S∩T ) v(K).

!

Theorem 4.9. Let (N,L) be a cycle-complete graph and let (N, v, L) be a link-convex game. Then,

the average tree solution x̄ is an element of the core.

Proof. We will prove this theorem in a similar way to the proof of Theorem 4.5.

Take any tree T ∈ BDFS and let xT be the corresponding marginal vector. Take any S ∈ CL(N),

and consider the subgraph (S, T (S)). It has components S1, S2, . . . , Sm, which are all rooted trees

with roots r1, r2, . . . , rm. Let r1, r2, . . . , rm be indexed such that

(4.11) m1 < m2 ⇒ des(rm1) ⊆ des(rm2) or des(rm1) ∩ des(rm2) = ∅.
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For k = 0, . . . ,m, let Dk := des(r1)∪ des(r2)∪ · · ·∪ des(rk), with the convextion that D0 = ∅. For

k = 0, . . . ,m, those successors of Sk in the tree T that lie outside S are denoted by δ(Sk) := { i |

(j, i) ∈ T, j ∈ Sk, i #∈ Sk} = {i1, i2, . . . , il }. We write R := {r1, r2, . . . , rm} and I :=
⋃m

k=1 δ(Sk).

For a node i ∈ I, we define ∆(i) := { r ∈ R | des(r) ⊆ des(i) }, ∆∗(i) := { r ∈ R | des(r) ⊆

des(i), "r′ ∈ R \ {r} s.t. des(r) ⊆ des(r′) ⊆ des(i) }. Note that
⋃

r∈∆(i) des(r) =
⋃

r∈∆∗(i) des(r).

For i ∈ N , we simply denote Di := des(i).

Consider some k ∈ {1, 2, . . . ,m} and suppose δ(Sk) #= ∅. Take any ih ∈ δ(Sk) and consider the

following two sets

U := S ∪Dk−1 ∪Di1 ∪Di2 ∪ · · · ∪Dih−1

W := Dih .

We will show that U,W ∈ CL(N) satisfy (LC1)～(LC3) of Definition 4.1. From the proof of

Theorem 4.5, we obtain W \ U,N \W ∈ CL(N).

Next we will prove that

U \W ∈ CL(N), (U \W ) ∪ (W \ U) ∈ CL(N).

First, we consider whether U \W is connected or not. Since U ∩W =
⋃

r∈∆(ih)
Dr,

U \W = U \ (U ∩W )

= S ∪Dk−1 ∪ (Di1 ∪Di2 ∪ · · · ∪Dih−1) \
⋃

r∈∆(ih)

Dr

=
⋃

p∈{1,2,...,m}

Sp ∪
⋃

p∈{1,2,...,k−1}

Drp ∪ (Di1 ∪Di2 ∪ · · · ∪Dih−1) \
⋃

r∈∆(ih)

Dr

=
⋃

p∈{1,2,...,m}
rp '∈∆(ih)

Sp ∪
⋃

p∈{1,2,...,k−1}
rp '∈∆(ih)

Drp ∪ (Di1 ∪Di2 ∪ · · · ∪Dih−1).(4.12)

By definition of S1, S2, . . . , Sm,

Sp ⊆ Drp and Drp ∈ CL(N) for all p ∈ {1, 2, . . . ,m}

⇒ Sp ⊆ Drp and Drp ∈ CL(N) for all p ∈ {1, 2, . . . , k − 1}(rp #∈ ∆(ih)).(4.13)

Since i1, i2, · · · , ih−1 ∈ δ(Sk),

(4.14) Sk ∪Di1 ∪Di2 ∪ · · · ∪Dih−1 ∈ CL(N).

In addition, rk #∈ ∆(ih) implies

(4.15) Sk ⊆
⋃

p∈{1,2,...,m}
rp '∈∆(ih)

Sp.
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In order to prove U \W ∈ CL(N), from (4.12)～(4.15), it suffices to show that

⋃

p∈{1,2,...,m}
rp '∈∆(ih)

Sp ∈ CL(N).

Let Ŝ :=
⋃

p∈{1,2,...,m}
rp '∈∆(ih)

Sp. Since S1, S2, . . . , Sm ∈ CL(N), in order to prove Ŝ ∈ CL(N), it suffices

to show that

for all m1,m2 ∈ {1, 2, . . . ,m} (rm1 , rm2 #∈ ∆(ih),m1 #= m2),

there exists a path i ∼Ŝ j for any i ∈ Sm1 , j ∈ Sm2 .

Now consider two distinct indexes m1,m2 ∈ {1, . . . ,m} (rm1 , rm2 #∈ ∆(ih),m1 #= m2). Without

loss of generality we suppose that m2 > m1. From (4.11) we find that des(rm1) and des(rm2)

satisfy

des(rm1) ⊆ des(rm2) or des(rm1) ∩ des(rm2) = ∅.

(I) When des(rm1) ⊆ des(rm2), consider the following two cases.

(i) Suppose " r ∈ R \ {rm1 , rm2} such that des(rm1) ⊆ des(r) ⊆ des(rm2).

Take any i1 ∈ Sm1 , i2 ∈ Sm2 . Since T is a rooted spanning tree of the graph (N,L),

(N,L(T )) is connected. Hence, there exists a path from i1 ∈ Sm1 to i2 ∈ Sm2 in

(N,L(T )), that is,

∃path i1 ∼ i2.

Let PT be the shortest path among the above paths. By i1, i2 ∈ S ∈ CL(N) it holds

that

∃path i1 ∼S i2

Let PS be the shortest path among the above paths. Since Sm1 and Sm2 are compo-

nents of (S, T (S)), PT has at least one node that lies outside S. Thus, PT is different

from PS . Let ρ(i1, i2) denote the sum of the lengths of PT and PS determined by i1

and i2. Let i∗1 ∈ Sm1 , i
∗
2 ∈ Sm2 be such that

ρ(i∗1, i
∗
2) = min{ ρ(i1, i2) | i1 ∈ Sm1 , i2 ∈ Sm2 }.

Meanwhile, by the assumption, "r ∈ R \ {rm1 , rm2} such that des(rm1) ⊆ des(r) ⊆

des(rm2), P
T does not contain any nodes in S other than those in Sm1 , Sm2 . Therefore,

the corresponding PT and PS for i∗1, i
∗
2 form a cycle. By the assumption that (N,L)

is a cycle-complete graph, there is a edge between any two nodes in the cycle. Thus,

{i∗1, i∗2} ∈ L, which leads to Sm1 ∪ Sm2 ∈ CL(N).
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(ii) Suppose ∃r ∈ R \ {rm1 , rm2} such that des(rm1) ⊆ des(r) ⊆ des(rm2).

Let R∗ = { r ∈ R | des(rm1) ⊆ des(r) ⊆ des(rm2) }. Assume that there is a node

r ∈ R∗ such that r ∈ ∆(ih), i.e., des(r) ⊆ des(ih). By rm1 #∈ ∆(ih), it holds that

des(ih) ∩ des(rm1) = ∅ or des(ih) # des(rm1),

which implies

des(r) ∩ des(rm1) = ∅ or des(r) # des(rm1).

This contradicts the fact that r ∈ R∗. Hence, r #∈ ∆(ih) for all r ∈ R∗. Therefore,

Sp ⊆
⋃

rq∈R
rq '∈∆(ih)

Sq for all rp ∈ R∗,

which implies

(4.16)
⋃

rp∈R∗

Sp ⊆
⋃

rq∈R
rq '∈∆(ih)

Sq = Ŝ.

Next, letR∗ := {rπ(1), rπ(2), . . . , rπ(z)}(rm1 = rπ(1), rm2 = rπ(z)) and let rπ(1), rπ(2), . . . , rπ(z)

be indexed such that for q = 2, 3, . . . , z,

des(rπ(q−1)) ⊆ des(rπ(q)) and "r ∈ R s.t. des(rπ(q−1)) ⊆ des(r) ⊆ des(rπ(q)).

From the result of (i),

Srπ(q−1)
∪ Srπ(q)

∈ CL(N) for q = 2, 3, . . . , z.

Hence,
⋃

rp∈R∗

Sp =
z⋃

q=1

Srπ(q)
∈ CL(N),
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and from (4.16) we obtain

∃ path i ∼Ŝ j for all i ∈ Sm1 , j ∈ Sm2 .

(II) When des(rm1) ∩ des(rm2) = ∅, let a ∈ N be the last common ancestor of rm1 and rm2 in

(N,T ). Let r′ ∈ R satisfy

|des(r′)| = min{ |des(r)| | r ∈ R, a ∈ des(r) }.

Analogously, we obtain

∃ path i ∼Ŝ r′ for all i ∈ Sm1 ,

∃ path j ∼Ŝ r′ for all j ∈ Sm2 .

Thus,

∃ path i ∼Ŝ j for all i ∈ Sm1 , j ∈ Sm2 .

Therefore Ŝ ∈ CL(N), i.e., U \W ∈ CL(N).

Now we obtain U \ W,W \ U ∈ CL(N). From ih ∈ δ(Sk), there exists a node j ∈ Sk ⊆

U \W such that {j, ih} ∈ L. Moreover, ih ∈ W \ U . Thus (U \W ) ∪ (W \ U) ∈ CL(N).

Hence, U and W satisfy the following conditions of link-convexity.

(LC1) U \W ∈ CL(N) and W \ U ∈ CL(N)

(LC2) (U \W ) ∪ (W \ U) ∈ CL(N)

(LC3) N \W ∈ CL(N).

Now link-convexity of the game implies that for all ih ∈ {i1, i2, . . . , il},

v(S ∪Dk−1 ∪ (Di1 ∪Di2 ∪ · · · ∪Dih−1)) + v(Dih)

≤ v(S ∪Dk−1 ∪Di1 ∪Di2 ∪ · · · ∪Dih−1 ∪Dih) +
∑

r∈∆∗(ih)

v(Dr).

By repeated application of this argument, it follows that

(4.17) v(S ∪Dk−1) +
∑

i∈δ(Sk)

v(Di) ≤ v(S ∪Dk) +
∑

i∈δ(Sk)

∑

r∈∆∗(i)

v(Dr).

Notice that this formula (4.17) is also valid if δ(Sk) = ∅, since S ∪ Dk−1 = S ∪ Sk ∪ Dk−1 =

S ∪Drk ∪Dk−1 = S ∪Dk. Repeating the same argument in the proof of Theorem 4.5 completes

the proof. !

Corollary 4.10. Let (N,L) be a cycle-complete graph and let (N, v, L) be a convex game. Then,

the average tree solution x̄ is an element of the core.

Proof. The corollary follows immediately from Theorem 4.8 and 4.9. !
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Corollary 4.11. Let (N,L) be a cycle-complete graph and let (N, v) be a convex game. Then, the

average tree solution x̄ is an element of the core.

Proof. Convexity of the game (N, v) readily implies convexity of the game (N, v, L). Then, the

corollary follows immediately from Corollary 4.10. !

5. Concluding remarks

In this paper we have discussed the relationship between the core and the average tree solution.

We gave an alternative condition that should replace link-convexity for the average tree solution to

be an element of the core of arbitrary graph games. For the class of games with a cycle-complete

graph structure, we found that link-convexity guarantees that the average tree solution belongs to

the core. In general, revised link-convexity is weaker than convexity and link-convexity is weaker

than superadditivity for games with a cycle-free graph. Thus the average tree solution lies in

the core for a class of games such that the previous solutions such as the Myerson value and the

position value can be outside of the core. This result suggests that the average tree solution can

be more stable allocation rule compared to the others.
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