83 research outputs found

    Clonal Differences between Non-Typhoidal Salmonella (NTS) Recovered from Children and Animals Living in Close Contact in The Gambia

    Get PDF
    Salmonellosis is a neglected tropical disease causing serious dysentery and septicaemia particularly in young infants, elderly and immunocompromised individuals such as HIV patients and associated with substantial mortality in developing countries. Salmonellosis also constitutes a major public health problem as it is considered the most widespread bacterial zoonosis of food origin throughout the world. Many epidemiological data exist from developed countries concerning transmission of Non-Typhoidal Salmonella (NTS) but few are available from developing countries. In addition few studies in sub-Saharan Africa have considered the interface between humans and their environment in relation to animals present in the household and food hygiene. This study describes the prevalence of NTS among fourteen Gambian children and 210 domestic animals living in close proximity (household) to the children in a rural setting in The Gambia. We found that the domestic animals living in the same household as patients carried different NTS serovar and genotypes; indicating that zoonotic transmission does not occur in our setting. This study provides baseline data for future studies of transmission of NTS in rural Africa

    Transmission of SARS-CoV-2 within households: a remote prospective cohort study in European countries.

    Get PDF
    Household transmission studies are useful to quantify SARS-CoV-2 transmission dynamics. We conducted a remote prospective household study to quantify transmission, and the effects of subject characteristics, household characteristics, and implemented infection control measures on transmission. Households with a laboratory-confirmed SARS-CoV-2 index case were enrolled  85% completed sample collection. 200 secondary SARS-CoV-2 infections were detected, yielding a household SAR of 45.7% (95% CI 39.7-51.7%) and per-person SAR of 32.6% (95%CI: 28.1-37.4%). 126 (63%) secondary cases were detected at enrollment. Mild (aRR = 0.57) and asymptomatic index cases (aRR = 0.29) were less likely to transmit SARS-CoV-2, compared to index cases with an acute respiratory illness (p = 0.03 for trend), and child index cases (< 12 years aRR = 0.60 and 12-18 years aRR = 0.85) compared to adults (p = 0.03 for trend). Infection control interventions in households had no significant effect on transmission. We found high SARs with the majority of transmissions occuring early after SARS-CoV-2 introduction into the household. This may explain the futile effect of implemented household measures. Age and symptom status of the index case influence secondary transmission. Remote, digitally-supported study designs with self-sampling are feasible for studying transmission under pandemic restrictions

    Dynamics of ampicillin-resistant Enterococcus faecium clones colonizing hospitalized patients: data from a prospective observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the dynamics of colonizing <it>Enterococcus faecium </it>clones during hospitalization, invasive infection and after discharge.</p> <p>Methods</p> <p>In a prospective observational study we compared intestinal <it>E. faecium </it>colonization in three patient cohorts: 1) Patients from the Hematology Unit at the University Hospital Basel (UHBS), Switzerland, were investigated by weekly rectal swabs (RS) during hospitalization (group 1a, n = 33) and monthly after discharge (group 1b, n = 21). 2) Patients from the Intensive Care Unit (ICU) at the University Medical Center Utrecht, the Netherlands (group 2, n = 25) were swabbed weekly. 3) Patients with invasive <it>E. faecium </it>infection at UHBS were swabbed at the time of infection (group 3, n = 22). From each RS five colonies with typical <it>E</it>. <it>faecium </it>morphology were picked. Species identification was confirmed by PCR and ampicillin-resistant <it>E. faecium </it>(ARE) isolates were typed using Multiple Locus Variable Number Tandem Repeat Analysis (MLVA). The Simpson's Index of Diversity (SID) was calculated.</p> <p>Results</p> <p>Out of 558 ARE isolates from 354 RS, MT159 was the most prevalent clone (54%, 100%, 52% and 83% of ARE in groups 1a, 1b, 2 and 3, respectively). Among hematological inpatients 13 (40%) had ARE. During hospitalization, the SID of MLVA-typed ARE decreased from 0.745 [95%CI 0.657-0.833] in week 1 to 0.513 [95%CI 0.388-0.637] in week 3. After discharge the only detected ARE was MT159 in 3 patients. In the ICU (group 2) almost all patients (84%) were colonized with ARE. The SID increased significantly from 0.373 [95%CI 0.175-0.572] at week 1 to a maximum of 0.808 [95%CI 0.768-0.849] at week 3 due to acquisition of multiple ARE clones. All 16 patients with invasive ARE were colonized with the same MLVA clone (<it>p </it>< 0.001).</p> <p>Conclusions</p> <p>In hospitalized high-risk patients MT159 is the most frequent colonizer and cause of invasive <it>E. faecium </it>infections. During hospitalization, ASE are quickly replaced by ARE. Diversity of ARE increases on units with possible cross-transmission such as ICUs. After hospitalization ARE are lost with the exception of MT159. In invasive infections, the invasive clone is the predominant gut colonizer.</p

    Etiologic Diagnosis of Lower Respiratory Tract Bacterial Infections Using Sputum Samples and Quantitative Loop-Mediated Isothermal Amplification

    Get PDF
    Etiologic diagnoses of lower respiratory tract infections (LRTI) have been relying primarily on bacterial cultures that often fail to return useful results in time. Although DNA-based assays are more sensitive than bacterial cultures in detecting pathogens, the molecular results are often inconsistent and challenged by doubts on false positives, such as those due to system- and environment-derived contaminations. Here we report a nationwide cohort study on 2986 suspected LRTI patients across P. R. China. We compared the performance of a DNA-based assay qLAMP (quantitative Loop-mediated isothermal AMPlification) with that of standard bacterial cultures in detecting a panel of eight common respiratory bacterial pathogens from sputum samples. Our qLAMP assay detects the panel of pathogens in 1047(69.28%) patients from 1533 qualified patients at the end. We found that the bacterial titer quantified based on qLAMP is a predictor of probability that the bacterium in the sample can be detected in culture assay. The relatedness of the two assays fits a logistic regression curve. We used a piecewise linear function to define breakpoints where latent pathogen abruptly change its competitive relationship with others in the panel. These breakpoints, where pathogens start to propagate abnormally, are used as cutoffs to eliminate the influence of contaminations from normal flora. With help of the cutoffs derived from statistical analysis, we are able to identify causative pathogens in 750 (48.92%) patients from qualified patients. In conclusion, qLAMP is a reliable method in quantifying bacterial titer. Despite the fact that there are always latent bacteria contaminated in sputum samples, we can identify causative pathogens based on cutoffs derived from statistical analysis of competitive relationship
    • …
    corecore