980 research outputs found
Light-time computations for the BepiColombo radioscience experiment
The radioscience experiment is one of the on board experiment of the Mercury
ESA mission BepiColombo that will be launched in 2014. The goals of the
experiment are to determine the gravity field of Mercury and its rotation
state, to determine the orbit of Mercury, to constrain the possible theories of
gravitation (for example by determining the post-Newtonian (PN) parameters), to
provide the spacecraft position for geodesy experiments and to contribute to
planetary ephemerides improvement. This is possible thanks to a new technology
which allows to reach great accuracies in the observables range and range rate;
it is well known that a similar level of accuracy requires studying a suitable
model taking into account numerous relativistic effects. In this paper we deal
with the modelling of the space-time coordinate transformations needed for the
light-time computations and the numerical methods adopted to avoid rounding-off
errors in such computations.Comment: 14 pages, 7 figures, corrected reference
The effect of the motion of the Sun on the light-time in interplanetary relativistic experiments
In 2002 a measurement of the effect of solar gravity upon the phase of
coherent microwave beams passing near the Sun has been carried out with the
Cassini mission, allowing a very accurate measurement of the PPN parameter
. The data have been analyzed with NASA's Orbit Determination Program
(ODP) in the Barycentric Celestial Reference System, in which the Sun moves
around the centre of mass of the solar system with a velocity of
about 10 m/sec; the question arises, what correction this implies for the
predicted phase shift. After a review of the way the ODP works, we set the
problem in the framework of Lorentz (and Galilean) transformations and evaluate
the correction; it is several orders of magnitude below our experimental
accuracy. We also discuss a recent paper \cite{kopeikin07}, which claims wrong
and much larger corrections, and clarify the reasons for the discrepancy.Comment: Final version accepted by Classical and Quantum Gravity (8 Jan. 2008
Hardware prototyping and validation of a W-ΔDOR digital signal processor
Microwave tracking, usually performed by on ground processing of the signals coming from a spacecraft, represents a crucial aspect in every deep-space mission. Various noise sources, including receiver noise, affect these signals, limiting the accuracy of the radiometric measurements obtained from the radio link. There are several methods used for spacecraft tracking, including the Delta-Differential One-Way Ranging (ΔDOR) technique. In the past years, European Space Agency (ESA) missions relied on a narrowband ΔDOR system for navigation in the cruise phase. To limit the adverse effect of nonlinearities in the receiving chain, an innovative wideband approach to ΔDOR measurements has recently been proposed. This work presents the hardware implementation of a new version of the ESA X/Ka Deep Space Transponder based on the new tracking technique named Wideband ΔDOR (W-ΔDOR). The architecture of the new transponder guarantees backward compatibility with narrowband ΔDOR
The Determination of Titan Gravity Field from Doppler Tracking of the Cassini Spacecraft
In its tour of the Saturnian system, the spacecraft Cassini is carrying out measurements of the gravity field of Titan, whose knowledge is crucial for constraining the internal structure of the satellite. In the five flybys devoted to gravity science, the spacecraft is tracked in X (8.4 GHz) and Ka band (32.5 GHz) from the antennas of NASA's Deep Space Network. The use of a dual frequency downlink is used to mitigate the effects of interplanetary plasma, the largest noise source affecting Doppler measurements. Variations in the wet path delay are effectively compensated by means of advanced water vapor radiometers placed close to the ground antennas. The first three flybys occurred on February 27, 2006, December 28, 2006, and June 29, 2007. Two additional flybys are planned in July 2008 and May 2010. This paper presents the estimation of the mass and quadrupole field of Titan from the first two flybys, carried out by the Cassini Radio Science Team using a short arc orbit determination. The data from the two flybys are first independently fit using a dynamical model of the spacecraft and the bodies of the Saturnian system, and then combined in a multi-arc solution. Under the assumption that the higher degree harmonics are negligible, the estimated values of the gravity parameters from the combined, multi-arc solution are GM = 8978.1337 +/- 0.0025 km(exp 3) / s(exp 2), J (sub 2) = (2.7221 +/- 0.0185) 10 (exp -5) and C (sub 22) = (1.1159 +/- 0.0040) 10 (exp -5) The excellent agreement (within 1.7 sigma) of the results from the two flybys further increases the confidence in the solution and provides an a posteriori validation of the dynamical model
Post-Einsteinian tests of gravitation
Einstein gravitation theory can be extended by preserving its geometrical
nature but changing the relation between curvature and energy-momentum tensors.
This change accounts for radiative corrections, replacing the Newton
gravitation constant by two running couplings which depend on scale and differ
in the two sectors of traceless and traced tensors. The metric and curvature
tensors in the field of the Sun, which were obtained in previous papers within
a linearized approximation, are then calculated without this restriction.
Modifications of gravitational effects on geodesics are then studied, allowing
one to explore phenomenological consequences of extensions lying in the
vicinity of general relativity. Some of these extended theories are able to
account for the Pioneer anomaly while remaining compatible with tests involving
the motion of planets. The PPN Ansatz corresponds to peculiar extensions of
general relativity which do not have the ability to meet this compatibility
challenge.Comment: 19 pages Corrected typo
The Laser Astrometric Test of Relativity Mission
This paper discusses new fundamental physics experiment to test relativistic
gravity at the accuracy better than the effects of the 2nd order in the
gravitational field strength. The Laser Astrometric Test Of Relativity (LATOR)
mission uses laser interferometry between two micro-spacecraft whose lines of
sight pass close by the Sun to accurately measure deflection of light in the
solar gravity. The key element of the experimental design is a redundant
geometry optical truss provided by a long-baseline (100 m) multi-channel
stellar optical interferometer placed on the International Space Station. The
geometric redundancy enables LATOR to measure the departure from Euclidean
geometry caused by the solar gravity field to a very high accuracy. LATOR will
not only improve the value of the parameterized post-Newtonian (PPN) parameter
gamma to unprecedented levels of accuracy of 1 part in 1e8, it will also reach
ability to measure effects of the next post-Newtonian order (1/c^4) of light
deflection resulting from gravity's intrinsic non-linearity. The solar
quadrupole moment parameter, J2, will be measured with high precision, as well
as a variety of other relativistic. LATOR will lead to very robust advances in
the tests of fundamental physics: this mission could discover a violation or
extension of general relativity, or reveal the presence of an additional long
range interaction in the physical law. There are no analogs to the LATOR
experiment; it is unique and is a natural culmination of solar system gravity
experiments.Comment: 8 pages, 2 figures, invited talk given at the Second International
Conference on Particle and Fundamental Physics in Space (SpacePart'03), 10-12
December 2003, Washington, D
Gravitational waves from coalescing binaries and Doppler experiments
Doppler tracking of interplanetary spacecraft provides the only method
presently available for broad-band searches of low frequency gravitational
waves. The instruments have a peak sensitivity around the reciprocal of the
round-trip light-time T of the radio link connecting the Earth to the
space-probe and therefore are particularly suitable to search for coalescing
binaries containing massive black holes in galactic nuclei. A number of Doppler
experiments -- the most recent involving the probes ULYSSES, GALILEO and MARS
OBSERVER -- have been carried out so far; moreover, in 2002-2004 the CASSINI
spacecraft will perform three 40 days data acquisition runs with expected
sensitivity about twenty times better than that achieved so far. Central aims
of this paper are: (i) to explore, as a function of the relevant instrumental
and astrophysical parameters, the Doppler output produced by in-spiral signals
-- sinusoids of increasing frequency and amplitude (the so-called chirp); (ii)
to identify the most important parameter regions where to concentrate intense
and dedicated data analysis; (iii) to analyze the all-sky and all-frequency
sensitivity of the CASSINI's experiments, with particular emphasis on possible
astrophysical targets, such as our Galactic Centre and the Virgo Cluster.Comment: 52 pages, LaTeX, 19 Postscript Figures, submitted to Phys. Rev.
Gravitation and inertia; a rearrangement of vacuum in gravity
We address the gravitation and inertia in the framework of 'general gauge
principle', which accounts for 'gravitation gauge group' generated by hidden
local internal symmetry implemented on the flat space. We connect this group to
nonlinear realization of the Lie group of 'distortion' of local internal
properties of six-dimensional flat space, which is assumed as a toy model
underlying four-dimensional Minkowski space. The agreement between proposed
gravitational theory and available observational verifications is satisfactory.
We construct relativistic field theory of inertia and derive the relativistic
law of inertia. This theory furnishes justification for introduction of the
Principle of Equivalence. We address the rearrangement of vacuum state in
gravity resulting from these ideas.Comment: 17 pages, no figures, revtex4, Accepted for publication in Astrophys.
Space Sc
Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system
We analytically compute the long-term orbital variations of a test particle
orbiting a central body acted upon by an incident monochromatic plane
gravitational wave. We assume that the characteristic size of the perturbed
two-body system is much smaller than the wavelength of the wave. Moreover, we
also suppose that the wave's frequency is much smaller than the particle's
orbital one. We make neither a priori assumptions about the direction of the
wavevector nor on the orbital geometry of the planet. We find that, while the
semi-major axis is left unaffected, the eccentricity, the inclination, the
longitude of the ascending node, the longitude of pericenter and the mean
anomaly undergo non-vanishing long-term changes. They are not secular trends
because of the slow modulation introduced by the tidal matrix coefficients and
by the orbital elements themselves. They could be useful to indepenedently
constrain the ultra-low frequency waves which may have been indirectly detected
in the BICEP2 experiment. Our calculation holds, in general, for any
gravitationally bound two-body system whose characteristic frequency is much
larger than the frequency of the external wave. It is also valid for a generic
perturbation of tidal type with constant coefficients over timescales of the
order of the orbital period of the perturbed particle.Comment: LaTex2e, 24 pages, no figures, no tables. Changes suggested by the
referees include
- …
