150 research outputs found

    Is there such a thing as free government data?

    Get PDF

    OpenCoesione and Monithon - a Transparency Effort

    Get PDF
    Context OpenCoesione is the first portal about the fulfilment of investments and projects planned by the Italian central government and by the Italian Regions using the 2007­2013 European Cohesion funds. Together with Monithon, it is a “transparency tool” whose aim is to foster participation of the citizens and efficiency of the public sector bodies in order to improve the implementation of development policies. By now it is one of the best Open Data portal in Italy quality­wise. Objective Our goal is to show the utility of these portals, how this open information is supposed to help the civil society and how data quality might affect reuse. Method We engage in the empirical observation on how data are exposed and used, discussing specific examples, and applying some data quality metrics. Results We present some evidences on how open data can positively affect the public sector bodies and the spending of funds. Conclusions Under­spending of EU Cohesion funds is a serious problem in Italy. OpenCoesione and Monithon can contribute solving this inefficiency, e.g., by presenting data in such a (standardised) way to enable their elaboration by third partie

    Functionalized carbon nanostructures versus drug resistance: Promising scenarios in cancer treatment

    Get PDF
    Carbon nanostructures (CN) are emerging valuable materials for the assembly of highly engineered multifunctional nanovehicles for cancer therapy, in particular for counteracting the insurgence of multi-drug resistance (MDR). In this regard, carbon nanotubes (CNT), graphene oxide (GO), and fullerenes (F) have been proposed as promising materials due to their superior physical, chemical, and biological features. The possibility to easily modify their surface, conferring tailored properties, allows different CN derivatives to be synthesized. Although many studies have explored this topic, a comprehensive review evaluating the beneficial use of functionalized CNT vs G or F is still missing. Within this paper, the most relevant examples of CN-based nanosystems proposed for MDR reversal are reviewed, taking into consideration the functionalization routes, as well as the biological mechanisms involved and the possible toxicity concerns. The main aim is to understand which functional CN represents the most promising strategy to be further investigated for overcoming MDR in cancer

    Polyphenols delivery by polymeric materials: challenges in cancer treatment

    Get PDF
    AbstractNanotechnology can offer different solutions for enhancing the therapeutic efficiency of polyphenols, a class of natural products widely explored for a potential applicability for the treatment of different diseases including cancer. While possessing interesting anticancer properties, polyphenols suffer from low stability and unfavorable pharmacokinetics, and thus suitable carriers are required when planning a therapeutic protocol. In the present review, an overview of the different strategies based on polymeric materials is presented, with the aim to highlight the strengths and the weaknesses of each approach and offer a platform of ideas for researchers working in the field

    Dextran-curcumin nanoparticles as a methotrexate delivery vehicle: A step forward in breast cancer combination therapy

    Get PDF
    With the aim to effectively deliver methotrexate (MTX) to breast cancer cells, we designed a nanocarrier system (DC) derived from the self-assembly of a dextran-curcumin conjugate prepared via enzyme chemistry with immobilized laccase acting as a solid biocatalyst. Nanoparticles consisted of homogeneously dispersed nanospheres with a mean diameter of 290 nm, as characterized by combined transmission electron microscopy and dynamic light scattering investigations. DC was able to control the MTX release overtime (t1/2 value of 310 min), with cell internalization studies proving its presence inside MCF-7 cytoplasm. Finally, improved MTX efficacy was obtained in viability assays, and attributed to the synergy of curcumin moieties and loaded MTX as underlined by a combination index (CI) < 1

    Graphene oxide functional nanohybrids with magnetic nanoparticles for improved vectorization of doxorubicin to neuroblastoma cells

    Get PDF
    With the aim to obtain a site-specific doxorubicin (DOX) delivery in neuroblastoma SH-SY5Y cells, we designed an hybrid nanocarrier combining graphene oxide (GO) and magnetic iron oxide nanoparticles (MNPs), acting as core elements, and a curcumin–human serum albumin conjugate as functional coating. The nanohybrid, synthesized by redox reaction between the MNPs@GO system and albumin bioconjugate, consisted of MNPs@GO nanosheets homogeneously coated by the bioconjugate as verified by SEM investigations. Drug release experiments showed a pH-responsive behavior with higher release amounts in acidic (45% at pH 5.0) vs. neutral (28% at pH 7.4) environments. Cell internalization studies proved the presence of nanohybrid inside SH-SY5Y cytoplasm. The improved efficacy obtained in viability assays is given by the synergy of functional coating and MNPs constituting the nanohybrids: while curcumin moieties were able to keep low DOX cytotoxicity levels (at concentrations of 0.44–0.88 µM), the presence of MNPs allowed remote actuation on the nanohybrid by a magnetic field, increasing the dose delivered at the target site
    • …
    corecore