646 research outputs found

    Effects of experimental parameters on the growth of GaN nanowires on Ti-film/Si(1 0 0) and Ti-foil by molecular beam epitaxy

    Get PDF
    Gallium nitride (GaN) nanostructures are used in optoelectronic applications due to their unique optical and electronic properties. For some optoelectronic applications and potential photocatalytic systems, the growth of GaN nanowires on metallic substrates instead of expensive single crystalline semiconductors can be beneficial due to specific properties of metals. In this study, GaN nanowire systems were grown on 300 nm Ti-film/Si(1 0 0) and Ti-foil by plasma assisted molecular beam epitaxy (PA-MBE) and characterized in situ by Auger electron spectroscopy (AES) and ex situ by scanning electron microscopy (SEM). Effects of (i) the nature of substrate surface, (ii) Ga flux, and (iii) substrate temperature on the growth of GaN nanowires were investigated. Nearly vertical nanowires can be grown on Ti-films covered with amorphous TiOx or TiOxNy, which is formed during the nitridation process. To grow nearly vertical nanowires on Ti-foils, pre-nitridation of the substrate surface was found to be important. The orientation of GaN nanowires grown on nitridated Ti-foil is determined by the grain alignment of the original Ti-foil, however, GaN nanowires grown on nitridated Ti-foils are uniformly oriented to one direction within an individual grain, which is most likely due to the epitaxial relation between the nanowires and the underneath grains of the polycrystalline Ti-foils. Both the orientation and nanowire density vary on different grains

    Reactions of ethanol over CeO2 and Ru/CeO2 catalysts

    Get PDF
    The reaction of ethanol has been investigated on Ru/CeO2 in steady state conditions as well as with temperature programmed desorption (TPD). High resolution transmission electron microscopy (HRTEM) images indicated that the used catalyst contained Ru particles with a mean size of ca. 1.5 nm well dispersed on CeO2 (of about 12–15 nm in size). Surface uptake of ethanol was measured by changing exposure to ethanol followed by TPD. Saturation coverage is found to be between 0.25 and 0.33 of a monolayer for CeO2 that has been prior heated with O2 at 773 K. The main reactions of ethanol on CeO2 during TPD are: re-combinative desorption of ethanol; dehydrogenation to acetaldehyde; and dehydration to ethylene. The dehydration to ethylene occurs mainly in a small temperature window at about 700 K and it is attributed to ethoxides adsorbed on surface-oxygen defects. The presence of Ru considerably modified the reaction of ceria towards ethanol. It has switched the desorption products to CO, CO2, CH4 and H2. These latter products are typical reforming products. Ethanol steam reforming (ESR) conducted on Ru/CeO2 indicated that optimal reaction activity is at about 673 K above which CO2 production declines (together with that of H2) due to reverse water gas shift. This trend was well captured during ethanol TPD where CO2 desorbed about 50 K below than CO on both oxidized and reduced Ru/CeO2 catalysts.Peer ReviewedPostprint (author's final draft

    Effect of nanoholes on the plasmonic properties of star nanostructures

    Get PDF
    The transmission and localized electric field distribution of nanostructures are the most important parameters in the plasmonic field for nano-optics and nanobiosensors. In this paper, we propose a novel nanostructure which may be used for nanobiosensor applications. The effect of nanoholes on the plasmonic properties of star nanostructure was studied via numerical simulation, using the finite-difference time-domain (FDTD) method. In the model, the material type and size of the nanostructures was fixed, but the distance between the monotor and the surface of the nanoholes was varied. For example, nanoholes were located in the center of the nanostructures. The simulation method was as follows. Initially, the wavelength of incident light was varied from 400 to 1200 nm and the transmission spectrum and the electric field distribution were simulated. Then at the resonance wavelength (wavelength where the transmission spectrum has a minimum), the localized electric field distribution was calculated at different distances from the surface of the nanostructures. This study shows that the position of nanoholes has a significant effect on the transmission and localized electric field distribution of star nanostructures. The condition for achieving the maximum localized electric field distribution can be used in nano-optics and nanobiosensors in the future

    Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts

    Get PDF
    Most oxygen evolution reaction (OER) electrocatalysts are not stable in corrosive acids. Even the expensive RuO2 or IrO2, the most acid-resistant oxides, can be dissolved at an oxidative potential. Herein, we realize that the failures of OER catalysts are mostly caused by the weak interface between catalysts and the substrates. Hence, the study of the interface structure between catalysts and substrates is critical. In this work, we observe that the cheap OER catalysts Co3O4 can be more durable than the state-of-the-art RuO2 if the interface quality is good enough. The Co3O4 nanosheets deposited on carbon paper (Co3O4/CP) is prepared by electroplating of Co-species and followed by a two-step calcination process. The 1st step occurs in vacuum in order to maintain the surface integrity of the carbon paper and converts Co-species to Co(II)O. The 2nd step is a calcination in ambient conditions which enables the complete transformation of Co(II)O to Co3O4 without degrading the mechanical strength of the Co3O4-CP interface. Equally important, an in situ formation of a layer of amorphous carbon on top of Co3O4 further enhances the OER catalyst stability. Therefore, these key advances make the Co3O4 catalyst highly active toward the OER in 0.5 M H2SO4 with a small overpotential (370 mV), to reach 10 mA/cm2. The observed long lifetime for 86.8 h at a constant current density of 100 mA/cm2, is among the best of the reported in literature so far, even longer than the state-of-art RuO2 on CP. Overall, our study provides a new insight and methodology for the construction of a high-performance and high stability OER electrocatalysts in corrosive acidic environments

    Up-conversion luminescence coupled to plasmonic gold nanorods for light harvesting and hydrogen production

    Get PDF
    The conversion of infrared light to visible-light which allows a larger fraction of sun-light to be used is needed to improve light-harvesting. In this work a tri-functional material composed of an up-converter (NaYF4–Yb–Tm), plasmonic gold nanorods and CdS was made photocatalytically active using 980 nm wavelength light for the reduction of H+ to H2.Peer ReviewedPostprint (author's final draft

    Switch in photocatalytic reaction selectivity: The effect of oxygen partial pressure on carbon-carbon bond dissociation over hydroxylated TiO₂(1 1 0) surfaces

    Get PDF
    Photocatalytic oxidation of ethanol over rutile TiO₂ (1 1 0) in the presence of O₂ have been studied with scanning tunneling microscopy and on-line mass spectrometry to elucidate the reaction mechanisms. The O₂ partial pressure has a direct impact on C–C bond cleavage, resulting in a shift of selectivity in gas phase products from acetaldehyde (dehydrogenation) to methyl radicals (C–C bond dissociation) with increasing pressure. This differs from the behavior of anatase TiO₂(1 0 1) single crystal, where at all investigated pressures negligible C–C bond dissociation occurs. The prevalence of the methyl radical species at high oxygen pressures is correlated with an increase in the surface population of an adsorbed species bound to Ti₅_c after the reaction, which are identified as formate moieties. Parallel XPS C1s, Ti2p and O1s further confirmed the assignment of surface population, by STM, to ethoxides at 300 K, in dark conditions (C1s at 286.7 and 285.4 eV attributed to –CHO₂–and–CH₃ groups respectively). After photoreaction, a large fraction of the surface was covered by formates (XPS C1 at 289.7 eV). This also correlated with the STM assignment where species spaced by 6 Å along the [0 0 1] direction and with a height of ca. 1.1 Å attributed to formates. Moreover the profile for CH₃ radical desorption in the gas phase as a function O₂ partial pressures correlated with the increasing surface population of formates. Analysis of the rate of methyl radical formation reveals fast and slow regimes, with photoreaction cross-sections between 10⁻¹⁷ cm² and 10⁻¹⁹ cm². The parallel channel of acetaldehyde production has a non-varying cross-section of ca. 2 × 10⁻¹⁹ cm². A schematic description of the two different reaction channels (dehydrogenation and C–C bond dissociation) is given and discussed
    corecore