11 research outputs found

    Scientometric Review and Thematic Areas for the Research Trends on Marine Hoses

    Get PDF
    For over three (3) decades, there has been an increase in research on energy sources from the production of oil using flexible marine risers, such as marine hoses. Marine hoses are conduits for special use as rubberized structures with hybrid polymer composites for offshore platforms in the oil and gas industry. This scientometric study uses qualitative, quantitative, and computational approaches. Data were retrieved using a research methodology that was created for this study using the SCOPUS and Web of Science (WoS) databases. This study provides a bibliometric literature review on marine hoses with an emphasis on the advancements made in the field from recent developments, geographical activity by countries, authorship histories, partnerships, funding sources, affiliations, co-occurrences, and potential research areas. The study found that the USA had the most publications, but there were fewer co-occurrences with connections outside the cluster. Due to the difficulty of adaptation, acceptability, qualification, and deployment of marine hoses in the offshore marine industry, this topic contains more conference papers than journal papers. Therefore, more funding sources and collaborations on marine hoses are required to advance the research. This study makes a contribution to scholarship on advances made in petroleum exploration and production for (un)loading hoses

    A literature review on the technologies of bonded hoses for marine applications

    Get PDF
    Marine bonded hoses are conduit-tubular structures used for loading, discharging, transferring and transporting fluid products like oil, gas, and water. These marine conduits are applied in the offshore industry by utilising novel marine materials and sustainable technologies. Based on sustainability, there are advances made as solutions for challenging environments. These challenges include scouring gases, deep water regions, changing sea water temperatures, platform loads and vessel motions. These environments also require sustainable materials like marine composites. This paper reviews historical timeline and patent development of hoses in the marine environment. It highlights key developments on marine hoses and their configurations. These configurations include FPSO-FSO with hose attachments in catenary configurations and CALM buoy-PLEM in Lazy-S configurations. The review also discusses the evolutions in the hose designs, potentials of the hoses, and recent state-of-the-art developments in the industry. Comprehensive discussions with necessary recommendations are made for fluid applications in the offshore industry

    Guidelines on Asset Management of Offshore Facilities for Monitoring, Sustainable Maintenance, and Safety Practices

    Get PDF
    Recent activities in the oil and gas industry have shown an increasing need for monitoring engagements, such as in shipping, logistics, exploration, drilling, or production. Hence, there is a need to have asset management of these offshore assets (or facilities). Much of the offshore infrastructure is currently approaching or past its operational life expectancy. The study presents an overview on asset management of offshore facilities towards monitoring, safe practices, maintenance, and sustainability. This study outlines the major considerations and the steps to take when evaluating asset life extensions for an aging offshore structure (or asset). The design and construction of offshore structures require some materials that are used to make the structural units, such as offshore platform rigs, ships, and boats. Maintaining existing assets in the field and developing new platforms that are capable of extracting future oil and gas resources are the two key issues facing the offshore sector. This paper also discusses fault diagnosis using sensors in the offshore facilities. The ocean environment is constantly corrosive, and the production activities demand extremely high levels of safety and reliability. Due to the limited space and remote location of most offshore operations, producing cost-effective, efficient, and long-lasting equipment necessitates a high level of competence. This paper presents the guidelines on asset monitoring, sustainable maintenance, and safety practices for offshore structures. In this study, the management of offshore structures were also presented with some discussions on fault monitoring using sensors. It also proposes sustainable asset management approaches as guidelines that are advised, with policy implications

    Numerical Study on Plastic Strain Distributions and Mechanical Behaviour of a Tube under Bending

    Get PDF
    Tubular pipe structures have been used in various applications—domestic, aviation, marine, manufacturing and material testing. The applications of tubular pipes have been considered greatly in the installation of tubular pipes, marine risers and pipe bending. For the investigation of plastic strains and the mechanical behaviour of a tube under bending, considerations were made utilising an exponent model with assumptions on the plane strain. The bending moment, wall thickness effect, cross-sectional distribution, stresses during bending and neutral layer boundaries were all presented as necessary theoretical formulations on the physics of tubular pipe bending. This model was based on the analytical and numerical investigation. In principle, the application can be observed as the spooling of pipes, bending of pipes and reeling. Comparisons were made on two models developed on the finite element analysis in Simscale OpenFEA, namely the linear-elastic and the elasto-plastic models. This study presents visualization profiles using plastic strain to assess its effect on the tubular pipes. This can increase due to the limitation of plastic deformation on the composite materials selected

    Guidelines on Composite Flexible Risers:Monitoring Techniques and Design Approaches

    Get PDF
    The increasing energy demand has led to more explorations in the oil and gas industry. To achieve this, marine risers and pipelines are used to convey fluid and other resources to meet the increasing demand. In recent years, hybrid flexible composite risers have become more adaptable. Flexible risers have already proven to be a popular riser solution for various floating production systems in shallow to deepwater in many parts of the world due to their good dynamic behaviour and dependability. The hybrid flexible composite riser is made up of numerous layers of plastics, flexible pipes, composites, and steel. Some innovative monitoring methods, such as Fiber Optics Bragg Gratings (FBG), are based on a clamped composite structure with embedded optical fibre. This study presents characteristics of the monitoring techniques of composite flexible riser technology. The advantages of the monitoring techniques include aiding composite riser measurements, recording data from riser deformation, improving integrity assurance, and dependability of design from stable readings. It also proposes some design approaches as guidelines that are advised, with some policy implications

    Effect of Various Mooring Materials on Hydrodynamic Responses of Turret-Moored FPSO with Emphasis on Intact and Damaged Conditions

    No full text
    The behavior of different mooring line materials has a significant influence on the behavior of the mooring system and, consequently, the dynamic responses of the floating platform. Although there have been previous studies on FPSOs and their mooring systems, the influence of mooring line failure scenarios associated with different mooring materials has received less attention, particularly for turret-moored FPSOs with taut moorings. Thus, this paper investigates the behavior of different mooring line materials in intact, single-line, and double-line damaged conditions on the hydrodynamic responses of the FPSO, restoring behavior, mooring, and riser tensions considering wave conditions in the Gulf of Mexico. Mooring lines including Aramid, HMPE, polyester, and steel wire were considered in the middle segment, which was the segment of interest in this study. The restoring forces of the mooring system were found to increase with increasing mooring stiffness, and a higher stiffness resulted in a higher loss of restoring force in the case of single-line failure. In all cases, the submerged weight and material stiffness had a significant influence on dynamic responses, mooring tension, transient responses, riser tension, and especially on the ability of the mooring system to resist the case of single-line failure. Each material was observed to behave differently in each degree of freedom (DOF), showing the necessity to pay close attention to the selection of mooring material for specific objectives

    Review on Fixed and Floating Offshore Structures. Part I:Types of Platforms with Some Applications

    Get PDF
    Diverse forms of offshore oil and gas structures are utilized for a wide range of purposes and in varying water depths. They are designed for unique environments and water depths around the world. The applications of these offshore structures require different activities for proper equipment selection, design of platform types, and drilling/production methods. This paper will provide a general overview of these operations as well as the platform classifications. In this paper, a comprehensive review is conducted on different offshore petroleum structures. This study examines the fundamentals of all types of offshore structures (fixed and floating), as well as the applications of these concepts for oil exploration and production. The study also presents various design parameters for state-of-the-art offshore platforms and achievements made in the industry. Finally, suitable types of offshore platforms for various water depths are offered for long-term operations. An extension of this study (Part II) covers sustainable design approaches and project management on these structures; this review helps designers in understanding existing offshore structures, and their uniqueness. Hence, the review also serves as a reference data source for designing new offshore platforms and related structures

    Optimization of mooring line design parameters using Mooring Optimization Tool for FPSO (MooOpT4FPSO) with the consideration of integrated design methodology

    No full text
    Optimization of mooring line design parameters including line azimuth angles, line diameter, line length and mooring radius is presented for a turret-moored FPSO. The optimization procedure is implemented using a Mooring Optimization Tool for FPSO (MooOpT4FPSO), which is an in-house optimization tool purposely developed for this purpose. The tool is a synchronisation of the Regrouping Particle Swarm Optimization (RegPSO) algorithm with commercial software, OrcaFlex. Case studies using a validated numerical FPSO model moored with multicomponent mooring lines acted upon by non-collinear wave, wind and current were analysed using the developed tool. To take into consideration the interaction of the riser system in the optimization procedure, the integrated design methodology was adopted where the riser safe operation (SAFOP) zone diagram combined with the offset diagram is used for the verification/assessment of the design criteria of the risers and mooring lines. The optimized FPSO model offsets in eight directions are found to be within the riser safe operation zone. Based on the results, the tool was able to simultaneously optimise the mooring line diameter, line length, mooring radius, and azimuth angles of the turret FPSO to achieve a specific offset. Application of the tool can help the industry save material (by reduction of line diameter and length) and consequently the overall project cost, in addition to the reduction of structural payload exerted on the platform. Furthermore, the tool has an automatic search capability, which is an improvement to the conventional mooring design approach that is based on a trial-and-error approach

    State-of-the-art review of composite marine risers for floating and fixed platforms in deep seas

    No full text
    The need for the utilisation of marine risers in deep seas has increased in recent years and this is due to increased drilling explorations with the shift in trend from shallower to deep and deeper waters. Also, there have been increased applications in sea-crossing infrastructure resulting in the need for longer risers, leading to a significant weight increase of marine risers used. Composite materials can thus be utilised in marine riser engineering to provide lightweight, fatigue-resistant, corrosion-resistant, low-bending stiffness and high-strength characteristics. In this paper, the history and potential of composite marine risers, including the first successful deployment of a composite riser joint offshore on the Heidrun Platform in 1995, are reviewed. The paper also discusses the advances achieved on composite marine risers for deep waters and presents some recommendations on their use, in light of their current significance and growth

    Experimental and predictive evaluation of mechanical properties of kenaf-polypropylene fibre-reinforced concrete using response surface methodology

    No full text
    Fibre-reinforced concrete (FRC) is an emerging construction material. However, improving its mechanical properties using sustainable materials remains a concern. In this paper, a combination of experimental and numerical techniques is applied to investigate the combined influence of kenaf (K) and polypropylene fibre (PPF) on the mechanical properties of KPPFRC. The optimal design component of Response Surface Methodology was utilised with combined fibre content between 0.5% and 2%. The results show a general increase in the mechanical properties with KF being the main contributing factor, and corresponding decreases in all responses with the increase in PPF. Nonetheless, the predicted optimal volume fraction of 1.5% consisting of 1.0 kg kF and 0.51 kg PPF gives a 100%, 174% and 100% rise in compressive, split tensile, and flexural strength respectively compared to the control sample. Hence, these optimal proportions of KF and PPF can be utilised as an eco-friendly sustainable material in concrete
    corecore