14 research outputs found

    Flattening and manipulation of the electronic structure of h-BN/Rh(111) nanomesh upon Sn intercalation

    Get PDF
    We have deposited Sn on corrugated hexagonal boron nitride (h-BN) nanomeshs formed on Rh(111) and found that Sn atoms are intercalated between h-BN and Rh, flattening the h-BN. Our reflection high-energy electron diffraction (RHEED) analysis showed that the average in-plane lattice constant of h-BN increases due to the loss of the corrugation. Furthermore, electronic structure measurements based on angle-resolved photoemission spectroscopy (ARPES) showed that the h-BN π band width increases significantly while the σ band width does not change as much. These behaviors were partly different from previous reports on the intercalation of h-BN/Rh system. Our results offer a novel, simple method to control the electronic structure of h-BN

    Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone

    Get PDF
    Materials that possess nontrivial topology and magnetism is known to exhibit exotic quantum phenomena such as the quantum anomalous Hall effect. Here, we fabricate a novel magnetic topological heterostructure Mn4Bi2Te7/Bi2Te3 where multiple magnetic layers are inserted into the topmost quintuple layer of the original topological insulator Bi2Te3. A massive Dirac cone (DC) with a gap of 40–75 meV at 16 K is observed. By tracing the temperature evolution, this gap is shown to gradually decrease with increasing temperature and a blunt transition from a massive to a massless DC occurs around 200–250 K. Structural analysis shows that the samples also contain MnBi2Te4/Bi2Te3. Magnetic measurements show that there are two distinct Mn components in the system that corresponds to the two heterostructures; MnBi2Te4/Bi2Te3 is paramagnetic at 6 K while Mn4Bi2Te7/Bi2Te3 is ferromagnetic with a negative hysteresis (critical temperature ~20 K). This novel heterostructure is potentially important for future device applications.T.H. was supported by JSPS KAKENHI Grant Number 18H03877, the Murata Science Foundation (No. H30-084), the Asahi Glass Foundation, Tokyo Tech. Challenging Research Award, and the Iketani Science and Technology Foundation (No. 0321083-A). M.K. was supported by the Spintronics Research Network of Japan (Spin-RNJ). The ARPES measurements were performed under the UVSOR proposal Nos. 29-837, 30-571, 30-860 and the SARPES measurements were performed under the HiSOR proposal No. 16BG001. The XMCD measurements were performed at JAEA beamline BL-23SU in SPring-8 (Proposal No. 2018B3843) and also at PF-KEK (PF PAC No. 17P006). The work at SPring-8 was performed under the Shared Use Program of JAEA Facilities (Proposal No. 2018B-E21) with the approval of Nanotechnology Platform project supported by the Ministry of Education, Culture, Sports, Science and Technology (Proposal No. A-18-AE-0039). The support by Tomsk State University competitiveness improvement program (No. 8.1.01.2018), the Saint Petersburg State University (Project ID 51126254), the Russian Science Foundation (Grant No. 18-12-00169) and the Government research assignment for ISPMS SB RAS, project No. III.23.2.9 is gratefully acknowledged. M.M.O. acknowledges the support by Spanish Ministerio de Ciencia e Innovación (Grant No. PID2019-103910GB-I00).Peer reviewe

    Dirac semimetal phase and switching of band inversion in XMg₂Bi₂ (X = Ba and Sr)

    No full text
    角度分解光電子分光と第一原理バンド計算とを組み合わせることで、三元化合物BaMg₂Bi₂が、結晶のC3対称性によって保護されたブリルアンゾーン中心付近で交差する単純なディラックバンドを持つトポロジカルディラック半金属であることを明らかにした。また、同じ結晶構造を持つSrMg₂Bi₂は、スピン−軌道相互作用の減少によりバンド反転がないことを特徴とする通常の絶縁体となっていることがわかった
    corecore