778 research outputs found

    Optimization of synchronization in gradient clustered networks

    Full text link
    We consider complex clustered networks with a gradient structure, where sizes of the clusters are distributed unevenly. Such networks describe more closely actual networks in biophysical systems and in technological applications than previous models. Theoretical analysis predicts that the network synchronizability can be optimized by the strength of the gradient field but only when the gradient field points from large to small clusters. A remarkable finding is that, if the gradient field is sufficiently strong, synchronizability of the network is mainly determined by the properties of the subnetworks in the two largest clusters. These results are verified by numerical eigenvalue analysis and by direct simulation of synchronization dynamics on coupled-oscillator networks.Comment: PRE, 76, 056113 (2007

    Robust dynamics in minimal hybrid models of genetic networks

    Get PDF
    Many gene-regulatory networks necessarily display robust dynamics that are insensitive to noise and stable under evolution. We propose that a class of hybrid systems can be used to relate the structure of these networks to their dynamics and provide insight into the origin of robustness. In these systems, the genes are represented by logical functions, and the controlling transcription factor protein molecules are real variables, which are produced and destroyed. As the transcription factor concentrations cross thresholds, they control the production of other transcription factors. We discuss mathematical analysis of these systems and show how the concepts of robustness and minimality can be used to generate putative logical organizations based on observed symbolic sequences. We apply the methods to control of the cell cycle in yeast

    Elucidating regulatory mechanisms downstream of a signaling pathway using informative experiments

    Get PDF
    Signaling cascades are triggered by environmental stimulation and propagate the signal to regulate transcription. Systematic reconstruction of the underlying regulatory mechanisms requires pathway-targeted, informative experimental data. However, practical experimental design approaches are still in their infancy. Here, we propose a framework that iterates design of experiments and identification of regulatory relationships downstream of a given pathway. The experimental design component, called MEED, aims to minimize the amount of laboratory effort required in this process. To avoid ambiguity in the identification of regulatory relationships, the choice of experiments maximizes diversity between expression profiles of genes regulated through different mechanisms. The framework takes advantage of expert knowledge about the pathways under study, formalized in a predictive logical model. By considering model-predicted dependencies between experiments, MEED is able to suggest a whole set of experiments that can be carried out simultaneously. Our framework was applied to investigate interconnected signaling pathways in yeast. In comparison with other approaches, MEED suggested the most informative experiments for unambiguous identification of transcriptional regulation in this system

    Evaluation of large language models for discovery of gene set function

    Full text link
    Gene set analysis is a mainstay of functional genomics, but it relies on manually curated databases of gene functions that are incomplete and unaware of biological context. Here we evaluate the ability of OpenAI's GPT-4, a Large Language Model (LLM), to develop hypotheses about common gene functions from its embedded biomedical knowledge. We created a GPT-4 pipeline to label gene sets with names that summarize their consensus functions, substantiated by analysis text and citations. Benchmarking against named gene sets in the Gene Ontology, GPT-4 generated very similar names in 50% of cases, while in most remaining cases it recovered the name of a more general concept. In gene sets discovered in 'omics data, GPT-4 names were more informative than gene set enrichment, with supporting statements and citations that largely verified in human review. The ability to rapidly synthesize common gene functions positions LLMs as valuable functional genomics assistants

    Identifying functional modules in protein–protein interaction networks: an integrated exact approach

    Get PDF
    Motivation: With the exponential growth of expression and protein–protein interaction (PPI) data, the frontier of research in systems biology shifts more and more to the integrated analysis of these large datasets. Of particular interest is the identification of functional modules in PPI networks, sharing common cellular function beyond the scope of classical pathways, by means of detecting differentially expressed regions in PPI networks. This requires on the one hand an adequate scoring of the nodes in the network to be identified and on the other hand the availability of an effective algorithm to find the maximally scoring network regions. Various heuristic approaches have been proposed in the literature

    Cytoscape 2.8: new features for data integration and network visualization

    Get PDF
    Summary: Cytoscape is a popular bioinformatics package for biological network visualization and data integration. Version 2.8 introduces two powerful new features—Custom Node Graphics and Attribute Equations—which can be used jointly to greatly enhance Cytoscape's data integration and visualization capabilities. Custom Node Graphics allow an image to be projected onto a node, including images generated dynamically or at remote locations. Attribute Equations provide Cytoscape with spreadsheet-like functionality in which the value of an attribute is computed dynamically as a function of other attributes and network properties

    Analysis of Gene Sets Based on the Underlying Regulatory Network

    Full text link
    Networks are often used to represent the interactions among genes and proteins. These interactions are known to play an important role in vital cell functions and should be included in the analysis of genes that are differentially expressed. Methods of gene set analysis take advantage of external biological information and analyze a priori defined sets of genes. These methods can potentially preserve the correlation among genes; however, they do not directly incorporate the information about the gene network. In this paper, we propose a latent variable model that directly incorporates the network information. We then use the theory of mixed linear models to present a general inference framework for the problem of testing the significance of subnetworks. Several possible test procedures are introduced and a network based method for testing the changes in expression levels of genes as well as the structure of the network is presented. The performance of the proposed method is compared with methods of gene set analysis using both simulation studies, as well as real data on genes related to the galactose utilization pathway in yeast.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78147/1/cmb.2008.0081.pd

    Intertemporal excess burden, bequest motives, and the budget deficit

    Get PDF
    The author aims to empirically determine the significant factors that affect the levels of budget deficits of central governments across time and across countries. He empirically tests two prominent theories of budget deficits-the Barro (1979) tax-smoothing approach, and the still-untested theory of negative bequest motives advocated by Cukierman and Meltzer (1989). The author uses econometric techniques including fixed-effects (both country and time) panel regressions spanning 87 countries over the period 1975 to 1992, and the Griliches treatment of missing data. The author finds relatively stronger statistical support for the tax-smoothing approach among developing countries but not in industrial countries. The existence of empirical evidence supporting the theory of negative bequest motives is indeterminate. The author also conducted post-regression analyses to assess the proportion of observed differences in budget deficits the factors were actually able to explain. These reveal that both theories are generally weak in accounting for inter-temporal changes in budget deficit shares for both industrial and developing countries. The theories performed significantly better in accounting for cross-section differences. The author has many contributions to the literature. First, he analyzes the question of what determines the size of central government budget deficits using cross-country time series data leading into the 1990s. Second, he provides empirical tests of the still-untested Cukierman-Meltzer (1989) negative bequest motive theory of budget deficits. By using the panel data, the author attempts to determine the factors that influence not only the inter-temporal differences in budget deficits but also those factors that lead to cross-country differences. Last but not least, he provides some preliminary evidence that poverty reduction is necessary for long-term government budget deficit reduction.Public Sector Economics&Finance,Environmental Economics&Policies,Economic Theory&Research,Banks&Banking Reform,Municipal Financial Management,Public Sector Economics&Finance,Economic Theory&Research,Economic Stabilization,Banks&Banking Reform,National Governance

    Validating module network learning algorithms using simulated data

    Get PDF
    In recent years, several authors have used probabilistic graphical models to learn expression modules and their regulatory programs from gene expression data. Here, we demonstrate the use of the synthetic data generator SynTReN for the purpose of testing and comparing module network learning algorithms. We introduce a software package for learning module networks, called LeMoNe, which incorporates a novel strategy for learning regulatory programs. Novelties include the use of a bottom-up Bayesian hierarchical clustering to construct the regulatory programs, and the use of a conditional entropy measure to assign regulators to the regulation program nodes. Using SynTReN data, we test the performance of LeMoNe in a completely controlled situation and assess the effect of the methodological changes we made with respect to an existing software package, namely Genomica. Additionally, we assess the effect of various parameters, such as the size of the data set and the amount of noise, on the inference performance. Overall, application of Genomica and LeMoNe to simulated data sets gave comparable results. However, LeMoNe offers some advantages, one of them being that the learning process is considerably faster for larger data sets. Additionally, we show that the location of the regulators in the LeMoNe regulation programs and their conditional entropy may be used to prioritize regulators for functional validation, and that the combination of the bottom-up clustering strategy with the conditional entropy-based assignment of regulators improves the handling of missing or hidden regulators.Comment: 13 pages, 6 figures + 2 pages, 2 figures supplementary informatio
    corecore