2 research outputs found

    Does the Danube exist? Versions of reality given by various regional climate models and climatological datasets

    Get PDF
    We present an intercomparison and verification analysis of several regional climate models (RCMs) nested into the same run of the same Atmospheric Global Circulation Model (AGCM) regarding their representation of the statistical properties of the hydrological balance of the Danube river basin for 1961-1990. We also consider the datasets produced by the driving AGCM, from the ECMWF and NCEP-NCAR reanalyses. The hydrological balance is computed by integrating the precipitation and evaporation fields over the area of interest. Large discrepancies exist among RCMs for the monthly climatology as well as for the mean and variability of the annual balances, and only few datasets are consistent with the observed discharge values of the Danube at its Delta, even if the driving AGCM provides itself an excellent estimate. Since the considered approach relies on the mass conservation principle and bypasses the details of the air-land interface modeling, we propose that the atmospheric components of RCMs still face difficulties in representing the water balance even on a relatively large scale. Their reliability on smaller river basins may be even more problematic. Moreover, since for some models the hydrological balance estimates obtained with the runoff fields do not agree with those obtained via precipitation and evaporation, some deficiencies of the land models are also apparent. NCEP-NCAR and ERA-40 reanalyses result to be largely inadequate for representing the hydrology of the Danube river basin, both for the reconstruction of the long-term averages and of the seasonal cycle, and cannot in any sense be used as verification. We suggest that these results should be carefully considered in the perspective of auditing climate models and assessing their ability to simulate future climate changes.Comment: 25 pages 8 figures, 5 table

    Hydrological cycle in the Danube basin in present-day and XXII century simulations by IPCCAR4 global climate models

    Get PDF
    We present an intercomparison and verification analysis of 20 GCMs (Global Circulation Models) included in the 4th IPCC assessment report regarding their representation of the hydrological cycle on the Danube river basin for 1961–2000 and for the 2161–2200 SRESA1B scenario runs. The basin-scale properties of the hydrological cycle are computed by spatially integrating the precipitation, evaporation, and runoff fields using the Voronoi-Thiessen tessellation formalism. The span of the model- simulated mean annual water balances is of the same order of magnitude of the observed Danube discharge of the Delta; the true value is within the range simulated by the models. Some land components seem to have deficiencies since there are cases of violation of water conservation when annual means are considered. The overall performance and the degree of agreement of the GCMs are comparable to those of the RCMs (Regional Climate Models) analyzed in a previous work, in spite of the much higher resolution and common nesting of the RCMs. The reanalyses are shown to feature several inconsistencies and cannot be used as a verification benchmark for the hydrological cycle in the Danubian region. In the scenario runs, for basically all models the water balance decreases, whereas its interannual variability increases. Changes in the strength of the hydrological cycle are not consistent among models: it is confirmed that capturing the impact of climate change on the hydrological cycle is not an easy task over land areas. Moreover, in several cases we find that qualitatively different behaviors emerge among the models: the ensemble mean does not represent any sort of average model, and often it falls between the models’ clusters
    corecore