3,142 research outputs found

    A thermodynamical model for non-extremal black p-brane

    Full text link
    We show that the correct entropy, temperature (and absorption probability) of non-extremal black p-brane can be reproduced by a certain thermodynamical model when maximizing its entropy. We show that the form of the model is related to the geometrical similarity of non-extremal and near extremal black p-brane at near horizon region, and argue about the appropriateness of the model.Comment: Almost the same version as the paper appeared in Physical Review

    Effective temperature in nonequilibrium steady states of Langevin systems with a tilted periodic potential

    Full text link
    We theoretically study Langevin systems with a tilted periodic potential. It has been known that the ratio Θ\Theta of the diffusion constant to the differential mobility is not equal to the temperature of the environment (multiplied by the Boltzmann constant), except in the linear response regime, where the fluctuation dissipation theorem holds. In order to elucidate the physical meaning of Θ\Theta far from equilibrium, we analyze a modulated system with a slowly varying potential. We derive a large scale description of the probability density for the modulated system by use of a perturbation method. The expressions we obtain show that Θ\Theta plays the role of the temperature in the large scale description of the system and that Θ\Theta can be determined directly in experiments, without measurements of the diffusion constant and the differential mobility

    Cosmological rotating black holes in five-dimensional fake supergravity

    Full text link
    In recent series of papers, we found an arbitrary dimensional, time-evolving and spatially-inhomogeneous solutions in Einstein-Maxwell-dilaton gravity with particular couplings. Similar to the supersymmetric case the solution can be arbitrarily superposed in spite of non-trivial time-dependence, since the metric is specified by a set of harmonic functions. When each harmonic has a single point source at the center, the solution describes a spherically symmetric black hole with regular Killing horizons and the spacetime approaches asymptotically to the Friedmann-Lema\^itre-Robertson-Walker (FLRW) cosmology. We discuss in this paper that in 5-dimensions this equilibrium condition traces back to the 1st-order "Killing spinor" equation in "fake supergravity" coupled to arbitrary U(1) gauge fields and scalars. We present a 5-dimensional, asymptotically FLRW, rotating black-hole solution admitting a nontrivial "Killing spinor," which is a spinning generalization of our previous solution. We argue that the solution admits nondegenerate and rotating Killing horizons in contrast with the supersymmetric solutions. It is shown that the present pseudo-supersymmetric solution admits closed timelike curves around the central singularities. When only one harmonic is time-dependent, the solution oxidizes to 11-dimensions and realizes the dynamically intersecting M2/M2/M2-branes in a rotating Kasner universe. The Kaluza-Klein type black holes are also discussed.Comment: 24 pages, 2 figures; v2: references added, to appear in PR

    A Magnetohydrodynamic Boost for Relativistic Jets

    Get PDF
    We performed relativistic magnetohydrodynamic simulations of the hydrodynamic boosting mechanism for relativistic jets explored by Aloy & Rezzolla (2006) using the RAISHIN code. Simulation results show that the presence of a magnetic field changes the properties of the shock interface between the tenuous, overpressured jet (VjzV^z_j) flowing tangentially to a dense external medium. Magnetic fields can lead to more efficient acceleration of the jet, in comparison to the pure-hydrodynamic case. A ``poloidal'' magnetic field (BzB^z), tangent to the interface and parallel to the jet flow, produces both a stronger outward moving shock and a stronger inward moving rarefaction wave. This leads to a large velocity component normal to the interface in addition to acceleration tangent to the interface, and the jet is thus accelerated to larger Lorentz factors than those obtained in the pure-hydrodynamic case. Likewise, a strong ``toroidal'' magnetic field (ByB^y), tangent to the interface but perpendicular to the jet flow, also leads to stronger acceleration tangent to the shock interface relative to the pure-hydrodynamic case. Overall, the acceleration efficiency in the ``poloidal'' case is less than that of the ``toroidal'' case but both geometries still result in higher Lorentz factors than the pure-hydrodynamic case. Thus, the presence and relative orientation of a magnetic field in relativistic jets can significant modify the hydrodynamic boost mechanism studied by Aloy & Rezzolla (2006).Comment: 25 pages, 10 figures, accepted for publication in Ap

    Do Water Fountain Jets Really Indicate the Onset of the Morphological Metamorphosis of Circumstellar Envelopes?

    Get PDF
    The small-scale bipolar jets having short dynamical ages from "water fountain (WF)" sources are regarded as an indication of the onset of circumstellar envelope morphological metamorphosis of intermediate-mass stars. Such process usually happens at the end of the asymptotic giant branch (AGB) phase. However, recent studies found that WFs could be AGB stars or even early planetary nebulae. This fact prompted the idea that WFs may not necessarily be objects at the beginning of the morphological transition process. In the present work, we show that WFs could have different envelope morphologies by studying their spectral energy distribution profiles. Some WFs have spherical envelopes that resembles usual AGB stars, while others have aspherical envelopes which are more common to post-AGB stars. The results imply that WFs may not represent the earliest stage of the morphological metamorphosis. We further argue that the dynamical age of a WF jet, which can be calculated from maser proper motions, may not be the real age of the jet. The dynamical age cannot be used to justify the moment when the envelope begins to become aspherical, nor to tell the concrete evolutionary status of the object. A WF jet could be the innermost part of a larger well-developed jet, which is not necessarily a young jet.Comment: 21 pages, 4 figures, accepted for publication in MNRA

    Thermal Equilibrium of String Gas in Hagedorn Universe

    Get PDF
    The thermal equilibrium of string gas is necessary to activate the Brandenberger-Vafa mechanism, which makes our observed 4-dimensional universe enlarge. Nevertheless, the thermal equilibrium is not realized in the original setup, a problem that remains as a critical defect. We study thermal equilibrium in the Hagedorn universe, and explore possibilities for avoiding the issue aforementioned flaw. We employ a minimal modification of the original setup, introducing a dilaton potential. Two types of potential are investigated: exponential and double-well potentials. For the first type, the basic evolutions of universe and dilaton are such that both the radius of the universe and the dilaton asymptotically grow in over a short time, or that the radius converges to a constant value while the dilaton rolls down toward the weak coupling limit. For the second type, in addition to the above solutions, there is another solution in which the dilaton is stabilized at a minimum of potential and the radius grows in proportion to tt. Thermal equilibrium is realized for both cases during the initial phase. These simple setups provide possible resolutions of the difficulty.Comment: 23 pages,19 figure

    Signal identification without signal formulation

    Full text link
    When there are signals and noises, physicists try to identify signals by modeling them, whereas statisticians oppositely try to model noise to identify signals. In this study, we applied the statisticians' concept of signal detection of physics data with small-size samples and high dimensions without modeling the signals. Most of the data in nature, whether noises or signals, are assumed to be generated by dynamical systems; thus, there is essentially no distinction between these generating processes. We propose that the correlation length of a dynamical system and the number of samples are crucial for the practical definition of noise variables among the signal variables generated by such a system. Since variables with short-term correlations reach normal distributions faster as the number of samples decreases, they are regarded to be ``noise-like'' variables, whereas variables with opposite properties are ``signal-like'' variables. Normality tests are not effective for data of small-size samples with high dimensions. Therefore, we modeled noises on the basis of the property of a noise variable, that is, the uniformity of the histogram of the probability that a variable is a noise. We devised a method of detecting signal variables from the structural change of the histogram according to the decrease in the number of samples. We applied our method to the data generated by globally coupled map, which can produce time series data with different correlation lengths, and also applied to gene expression data, which are typical static data of small-size samples with high dimensions, and we successfully detected signal variables from them. Moreover, we verified the assumption that the gene expression data also potentially have a dynamical system as their generation model, and found that the assumption is compatible with the results of signal extraction.Comment: 22 pages, 16 figure

    Schr\"odinger's cat in an optical sideband

    Get PDF
    We propose a method to subtract a photon from a double sideband mode of continuous-wave light. The central idea is to use phase modulation as a frequency sideband beamsplitter in the heralding photon subtraction scheme, where a small portion of the sideband mode is downconverted to the carrier frequency to provide a trigger photon. An optical Schr\"odinger's cat state is created by applying the propesed method to a squeezed state at 500MHz sideband, which is generated by an optical parametric oscillator. The Wigner function of the cat state reconstructed from a direct homodyne measurement of the 500MHz sideband modes shows the negativity of W(0,0)=−0.088±0.001W(0,0) = -0.088\pm0.001 without any loss corrections.Comment: 11 pages, 9 figure

    Gravitational Wave Signals from Chaotic System: A Point Mass with A Disk

    Full text link
    We study gravitational waves from a particle moving around a system of a point mass with a disk in Newtonian gravitational theory. A particle motion in this system can be chaotic when the gravitational contribution from a surface density of a disk is comparable with that from a point mass. In such an orbit, we sometimes find that there appears a phase of the orbit in which particle motion becomes to be nearly regular (the so-called ``stagnant motion'') for a finite time interval between more strongly chaotic phases. To study how these different chaotic behaviours affect on observation of gravitational waves, we investigate a correlation of the particle motion and the waves. We find that such a difference in chaotic motions reflects on the wave forms and energy spectra. The character of the waves in the stagnant motion is quite different from that either in a regular motion or in a more strongly chaotic motion. This suggests that we may make a distinction between different chaotic behaviours of the orbit via the gravitational waves.Comment: Published in Phys.Rev.D76:024018,200
    • …
    corecore