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ABSTRACT

We performed relativistic magnetohydrodynamic simulations of the hydrodynamic boosting mechanism for
relativistic jets explored by Aloy and Rezzolla using the RAISHIN code. Simulation results show that the presence
of a magnetic field changes the properties of the shock interface between the tenuous, overpressured jet (V z

j ) flowing
tangentially to a dense external medium. Magnetic fields can lead to more efficient acceleration of the jet, in com-
parison to the pure hydrodynamic case. A ‘‘poloidal’’ magnetic field (Bz), tangent to the interface and parallel to the
jet flow, produces both a stronger outward moving shock and a stronger inward moving rarefaction wave. This leads
to a large velocity component normal to the interface in addition to acceleration tangent to the interface, and the jet is
thus accelerated to larger Lorentz factors than those obtained in the pure hydrodynamic case. Likewise, a strong
‘‘toroidal’’ magnetic field (By), tangent to the interface but perpendicular to the jet flow, also leads to stronger accel-
eration tangent to the shock interface relative to the pure hydrodynamic case. Overall, the acceleration efficiency in
the poloidal case is less than that of the toroidal case, but both geometries still result in higher Lorentz factors than the
pure hydrodynamic case. Thus, the presence and relative orientation of a magnetic field in relativistic jets can
significantly modify the hydrodynamic boost mechanism studied by Aloy and Rezzolla.

Subject headings: black hole physics — galaxies: jets — gamma rays: bursts — methods: numerical — MHD —
relativity

1. INTRODUCTION

Relativistic jets have been observed in active galactic nuclei
(AGNs) and quasars (e.g., Urry & Padovani 1995; Ferrari 1998),
and in black hole binaries (microquasars; e.g.,Mirabel&Rodrı́guez
1999), and are also thought to be responsible for the jetted emis-
sion from gamma-ray bursts (GRBs; e.g., Zhang & Mészáros
2004; Piran 2005; Mészáros 2006). Proper motions observed
in jets from microquasars and AGNs imply jet speeds from
�0.9c up to�0.999c, and Lorentz factors in excess of � � 100
have been inferred for GRBs. The acceleration mechanism(s)
capable of boosting jets to such highly relativistic speeds has not
yet been fully established.

The most promising mechanisms for producing relativistic
jets involvemagnetohydrodynamic centrifugal acceleration and/or
magnetic pressure driven acceleration from the accretion disk
around compact objects (e.g., Blandford & Payne 1982; Fukue
1990) or direct extraction of rotational energy from a rotating
black hole (e.g., Penrose 1969; Blandford & Znajek 1977). Re-
cent general relativistic magnetohydrodynamic (GRMHD) sim-
ulations of jet formation in the vicinity of strong gravitational
field sources, such as black holes or neutron stars, show that
jets can be produced and accelerated by the presence of magnetic
fields that are significantly amplified by the rotation of the ac-
cretion disk and /or the frame-dragging of a rotating black hole
(e.g., Koide et al. 1999, 2000; Nishikawa et al. 2005; Mizuno
et al. 2006b; De Villiers et al. 2005; Hawley & Krolik 2006;

McKinney & Gammie 2004; McKinney 2006). The presence
of strong magnetic fields is likely in areas close to the forma-
tion and acceleration region of relativistic jets. In the context of
GRBs, standard scenarios invoke a fireball that is accelerated
by thermal pressure during the initial free expansion phase
(e.g., Mészáros et al. 1993; Piran et al. 1993). Magnetic dissi-
pation may occur during the expansion, and a fraction of the
dissipated energy may be used to further accelerate the fire-
ball (e.g., Drenkhahn & Spruit 2002). Whether one considers
the fate of the collapsing core of a very massive star (Woosley
1993) or the merger of a neutron star binary system (Paczyński
1986), the differentially rotating disks that feed the newly born
black hole are likely to amplify any present seed field through
magnetic braking and the magnetorotational instability (MRI)
proposed by Balbus & Hawley (1991, 1998). Numerical solu-
tions of the coupled Einstein-Maxwell MHD equations (e.g.,
Stephens et al. 2007 and references therein) confirm the expected
growth of seed fields, even to the point at which the fields be-
come strong enough to be dynamically important.
Recently, Aloy & Rezzolla (2006) investigated a potentially

powerful acceleration mechanism in the context of purely hydro-
dynamical flows, posing a simple Riemann problem. If the jet is
hotter and at much higher pressure than a denser colder external
medium, andmoves with a large velocity tangent to the interface,
the relative motion of the two fluids produces a hydrodynamical
structure in the direction perpendicular to the flow (normal to the
interface), composed of a ‘‘forward shock’’ moving away from
the jet axis and a ‘‘reverse shock’’ (or a rarefaction wave) moving
toward the jet axis. Aloy & Rezzolla (2006) label this pattern
either SCS! or RCS!), where S refers to the reverse shock,
( R to the reverse rarefaction wave), S! to the forward shock,
and C to the contact discontinuity between the two fluids. In the
case RCS!, the rarefaction wave propagates into the jet and the
low-pressure wave leads to strong acceleration of the jet fluid
into the ultrarelativistic regime in a narrow region near the con-
tact discontinuity. This hydrodynamical boosting mechanism is
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very simple and powerful but is likely to be modified by the ef-
fects of magnetic fields present in the initial flow or generated
within the shocked outflow.

Here we investigate the effect of magnetic fields on the boost
mechanism proposed by Aloy & Rezzolla (2006). We find that
the presence of magnetic fields in the jet can provide even more
efficient acceleration of the jet than is possible in the pure hydro-
dynamic case. The highly significant role magnetic fields may
play in accretion flows (e.g., Miller et al. 2006) and in core-
collapse supernovae (e.g., Woosley & Janka 2005) is perhaps
echoed in the collimated relativistic outflows from some com-
pact stellar remnants.

2. NUMERICAL METHOD

In order to study the magnetohydrodynamic boost mechanism
for relativistic jets, we use a one-dimensional (1D) special rel-
ativistic MHD (RMHD) version of the three-dimensional (3D)
GRMHD code RAISHIN in Cartesian coordinates (Mizuno et al.
2006a). A detailed description of the code and its verification can
be found in Mizuno et al. (2006a). In the simulations presented
here we use the piecewise parabolic method for reconstruction,
the Harten, Lax, & van Leer (HLL) approximate Riemann solver
(Harten et al. 1983), a flux-constrained transport scheme to keep
the magnetic fields divergence free (Tóth 2000), and Noble’s
two-dimensional (2D) primitive variable inversionmethod (Noble
et al. 2006).

We consider the Riemann problem consisting of two uniform
initial states (a left and a right state) with different and dis-
continuous hydrodynamic properties specified by the rest-mass
density �, the gas pressure p, the specific internal energy u, the
specific enthalpy h � 1þ u/c2 þ p/�c2, and with velocity com-
ponent V t ¼ V z (the jet direction) tangent to the initial discon-
tinuity. We consider the right state (the medium external to the
jet) to be a ‘‘colder’’ fluid with a large rest-mass density and
essentially at rest. Specifically, we select the following initial
conditions: �R ¼ 10�2�0, pR ¼ 1:0�0c

2, V n
R ¼ V x

R ¼ 0:0, and
V t
R ¼ V z

R ¼ 0:0, where �0 is an arbitrary normalization con-
stant (our simulations are scale-free) and c is the speed of light
in vacuum, c ¼ 1. The left state ( jet region) is assumed to have
lower density, higher temperature, and higher pressure than the
colder, denser right state and to have a relativistic velocity
tangent to the discontinuity surface. Specifically, �L ¼ 10�4�0,
pL ¼10:0�0c2, V n

L ¼ V n
L ¼ 0:0, andV t

L ¼ V z
L ¼ 0:99c (�L ’ 7;

in Table 1 these conditions are collectively labeled as case
HDA). The fluid satisfies an adiabatic �-law equation of state
with � ¼ 4/3. The relevant sound speeds are aj ¼ 0:57735c in
the jet flow and ae ¼ 0:57663c in the external medium, where the
sound speed is given by a ¼ �p/�hð Þ1/2. We note that if the

adiabatic index were � ¼ 5/3, the sound speeds would be aj;e �
0:82c. These velocities exceed the maximum physically allowed
sound speed a ¼ c/

ffiffiffi

3
p

. Therefore, we choose the adiabatic index
to be � ¼ 4/3 in our simulations. Figure 1 shows a schematic
depiction of the geometry of our simulations.

To investigate the effect of magnetic fields, we consider the
following left state field geometries: ‘‘poloidal,’’ with Bz ¼
6:0(�0c

2)1/2 [B0z ¼ 6:0(�0c2)
1/2], in the MHDA case; and ‘‘to-

roidal’’ (not truly toroidal but we use this designation for simplic-
ity), with By ¼ 42:0(�0c

2)1/2 [B0y ¼ 6:0(�0c
2)1/2], in the MHDB

case (see Table 1), where B0i is the magnetic field measured in
the jet fluid frame (B

0
y ¼ By/�, B0z ¼ Bz). Although the strength

of the magnetic field measured in the laboratory frame (Bi) in
the left state is larger in the MHDB case than the MHDA case,
the magnetic pressure ( pmag) is the same as that of the MHDA
case [ pmag ¼ (B0)2/2]. The relevant Alfvén speed in the left
state is vAj ¼ 0:68825c, whereas the Alfvén speed vA is given
by vA ¼ f½(B0)2/c2�/½�hþ (B0)2/c2�g1/2.

For comparison, the HDB case listed in Table 1 is a high gas
pressure, pure hydrodynamic case ( pL ¼ 28:0�0c

2). In this case
the gas pressure pL in left state is equal to the total pressure ( ptot)
in the MHD cases ( ptot ¼ pgas þ pmag) in the left state.

We employ free boundary conditions in all directions. The
simulations are performed in the region �0:2 � x � 0:2 with
6400 computational zones (� x ¼ 6:25 ; 10�5) until simulation

TABLE 1

Model and Parameters

Case State � p V x V y V z Bx(B0x) By(B0y) Bz(B0z)

HDA....................................... Left 10�4 10.0 0.0 0.0 0.99 0.0(0.0) 0.0(0.0) 0.0(0.0)

Right 10�2 1.0 0.0 0.0 0.0 0.0(0.0) 0.0(0.0) 0.0(0.0)

HDB ....................................... Left 10�4 28.0 0.0 0.0 0.99 0.0(0.0) 0.0(0.0) 0.0(0.0)

Right 10�2 1.0 0.0 0.0 0.0 0.0(0.0) 0.0(0.0) 0.0(0.0)

MHDA ................................... Left 10�4 10.0 0.0 0.0 0.99 0.0(0.0) 0.0(0.0) 6.0(6.0)

Right 10�2 1.0 0.0 0.0 0.0 0.0(0.0) 0.0(0.0) 0.0(0.0)

MHDB.................................... Left 10�4 10.0 0.0 0.0 0.99 0.0(0.0) 42.0(6.0) 0.0(0.0)

Right 10�2 1.0 0.0 0.0 0.0 0.0(0.0) 0.0(0.0) 0.0(0.0)

Notes.—HDA is a hydrodynamic case. MHDA and MHDB are magnetohydrodynamic cases with Bz
L ¼ 6:0 (B0z;L ¼ 6:0) and B

y
L ¼ 42:0

(B0y;L ¼ 6:0), respectively. HDB is a hydrodynamic case with gas pressure pgas;L equal to ptot;L ¼ pgas;L þ pmag;L in the MHD cases.

Fig. 1.—Schematic picture of our simulations.
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time t ¼ 0:1. We emphasize that our simulations are scale-free.
If we specify a system of sizeL ¼ 107 cm (�L ’ 6:25 ; 102 cm),
a simulation time of t ¼ 0:2 corresponds to about 0.06 ms. The
units of magnetic field strength and pressure depend on the nor-
malization of the density. If we take, for example, the density unit
to be �0 ¼ 10�20 g cm�3, themagnetic field strength unit is about
3 G and the pressure unit is P ’ 10 dyn cm�2.

3. RESULTS

3.1. Effects of the Magnetic Field
in One-dimensional Simulations

Figure 2 shows the radial profiles of density, gas pressure,
velocity normal to the interface (V x, hereafter normal velocity),
and velocity tangent to the interface (V z, hereafter tangential
velocity) for case HDA. The solution displays a right-moving
shock, a right-moving contact discontinuity, and a left-moving
rarefaction wave ( RCS!). This hydrodynamical profile is sim-
ilar to that found by Rezzolla et al. (2003) and Aloy & Rezzolla
(2006). The simulation results (dashed lines) are in good agree-
ment with the exact solution (solid lines, calculated with the code
of Giacomazzo & Rezzolla 2006) except for the spike in the nor-
mal velocity V x. Otherwise the normal velocity and propagation
of the shock propagating to the right (the forward shock) is V x �
0:082c, where this value is determined from the exact solution.
The small spike evident in Figure 2 is a numerical artifact and is
seen in all simulation results (e.g., in Fig. 3, middle) at the right-
moving shock (S!). This numerical spike is reduced by higher
resolution calculations (see the Appendix). In the left-moving
rarefaction ( R) region, the tangential velocity increases as a
result of the hydrodynamical boosting mechanism described by
Aloy & Rezzolla (2006). In the case shown in Figure 2 the jet is
accelerated to � � 12 from an initial Lorentz factor of �L ’ 7.

Figure 3 displays the resulting profiles of gas pressure, normal
velocity (V x), and tangential velocity (V z) of the magnetohydro-
dynamic cases MHDA (blue curve) and MHDB (red curve), and
the high-pressure, pure hydrodynamic case HDB (green curve).

In the magnetohydrodynamic cases, the magnetization parameter
� � (B0)2/�h and the plasma beta parameter� � pgas/pmag (on the
left side) are 0.556 and 0.45, respectively. The resulting structure
consists of a right-propagating fast shock, a right-propagating
contact discontinuity, and a left-propagating fast rarefaction wave
( RFCSF!).
In the MHDA case (Bz ¼ 6:0, B0z ¼ 6:0), shown as blue

curves, the right-moving fast shock (SF!) and the left-moving

Fig. 2.—Profiles of density (top left), gas pressure (bottom left), normal
velocity (V x, top right), and tangential velocity (Vz, bottom right) in the HDA
case at time t ¼ 0:2. The solid lines are the exact solution, and the dashed lines
are the simulation results.

Fig. 3.—Profiles of gas pressure (top), normal velocity (V x,middle), and tan-
gential velocity (V z, bottom) in the HDB (green curve), MHDA (blue curve),
MHDB (red cure), and HDA (dotted black curve) cases at time t ¼ 0:2.
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fast rarefaction wave ( RF ) are stronger than the related struc-
tures in the HDA case. Consequently, the normal velocity (V x �
0:172c) is larger than that for the HDA case (V x � 0:082c). The
tangential velocity (V z � 0:9915c) is lower than that of theHDA
case (V z � 0:9933c). These velocity values are determined from
the exact solution. Although the acceleration in the z-direction is
weaker, the jet experiences a larger total acceleration than in the
HDA case due to the larger normal velocity, and the jet Lorentz
factor reaches � � 15. Thus, the poloidal magnetic field in the jet
region strongly affects sideways expansion, shock profile, and
total acceleration.

In theMHDBcase (By ¼ 42:0,B0y ¼ 6:0), shown as red curves,
the right-moving fast shock (SF!) is slightly weaker than in
the HDA case, and the resulting normal velocity (V x � 0:080c)
is slightly less than in the HDA case (V x � 0:082c). The left-
propagating fast rarefaction wave ( RF ) is stronger than what
we found for the HDA case. Therefore, the tangential velocity
(V z � 0:9958c) is higher than in the HDA case (V z � 0:9933c).
These velocity values are determined from the exact solution.
Although the toroidal magnetic field in the jet region does not
greatly affect the sideways expansion and shock profile, the re-
sulting total acceleration to � � 19 is larger than in the HDA
case.

To investigate the effect of the total pressure, we performed
a pure hydrodynamic simulation with high gas pressure (case
HDB), shown as green curves, equal to the total (gas plus mag-
netic) pressure ( ptot ¼ pgas þ pmag) in the MHD cases. The re-
sulting structure for this case is the same as that of HDA case
( RCS!). The right-moving shock (S!) and the left-moving
rarefaction wave ( R) are slightly stronger than those in the
HDA case because of the initial high gas pressure in the left
state. Consequently, the normal velocity V x in the HDB case is
larger (V x � 0:108c) than in the HDA case (V x � 0:0822c). In
the region of the left-propagating rarefaction wave ( R), the
tangential velocity is the same as that in the HDA case, the jet
accelerates only with a marginally greater efficiency than in the
HDA case, and the resulting Lorentz factor thus reaches only
� � 15.

Although the total pressure is the same in the hydrodynamic
HDB case and MHD cases, the existence and direction of the
magnetic field changes the shock profiles and acceleration. We
summarize the acceleration properties of the different cases in
Table 2, where velocity values are determined from the exact
solutions. When the gas pressure becomes large in the left state,
the normal velocity increases and the jet is more efficiently ac-
celerated. This is because the larger discontinuity in the gas
pressure produces a stronger forward shock as well as stronger
rarefaction. In MHD, the magnetic pressure is measured in the
jet fluid frame and depends on the angle between the flow and
magnetic field. The magnetosonic speeds also depend on the
angle between the flow and the magnetic field, even for the same
magnetic pressure. The direction of the magnetic field is thus a
very important geometric parameter for relativistic magnetohy-

drodynamics. When a poloidal magnetic field (Bz) is present in
the jet region, larger sideways expansion is produced, and the jet
can achieve higher speed due to the contribution from the normal
velocity. By contrast, when a toroidal magnetic field (By) is pre-
sent in the jet region, although the shock profile is only changed
slightly, the jet is more accelerated in the tangential direction
due to the additional contribution of the tangential component of
the Lorentz force [FEM;z ¼ (J < B)z] shown in Figure 4 (in the
MHDA case there is no additional force). It should be noted that
the region with high Lorentz force is approximately coincident
with the acceleration region �0.025 to 0.0 and the force still ex-
ists at time t ¼ 0:2. The region with the highest Lorentz force is
at the inner edge of the acceleration region. From an efficiency
point of view, a toroidal magnetic field with the same strength in
the jet fluid frame and the same magnetic pressure as those of a
poloidal field provides the most efficient acceleration. A poloidal
magnetic field provides acceleration comparable to that resulting
from high gas pressure, for example, the HDB case.

3.2. Dependence of the MHD Boost Mechanism
on Magnetic Field Strength

To investigate the acceleration efficiency of themagnetic field,
we compare jet speeds for the MHDA and MHDB cases; the
results are shown in Figure 5. The left panels in Figure 5 show
the dependence of the maximum tangential and normal veloci-
ties and resulting Lorentz factors on the strength of the poloidal
(B0z) component of the magnetic field in the fluid frame. The solid
line indicates values obtained using the code of Giacomazzo
& Rezzolla (2006), and the plus signs indicate values obtained
from our simulations at time t ¼ 0:2. For numerical reasons our
code does not yield a solution for B0z > 10 (Bz > 10; the simu-
lation results are indicated by the plus signs). When the poloidal
magnetic field increases, the code of Giacomazzo & Rezzolla
(2006) indicates that themaximum normal velocity increases and
themaximum tangential velocity deceases. The break nearB0z ’ 4
occurs near the transition (in the left state) from gas pressure

TABLE 2

Maximum Velocities and Lorentz Factor

Case Vx V z �

HDA........................................................ 0.082211 0.993292 11.9820

HDB (high gas pressure) ........................ 0.107550 0.993293 15.2890

MHDA (poloidal field)........................... 0.171533 0.991502 14.8255

MHDB (toroidal field) ............................ 0.080350 0.995750 19.9020

Note.—Velocity values are determined from exact solutions.

Fig. 4.—Profile of tangential component of Lorentz force [FEM; z ¼ (J < B)z]
of the MHDA (B0z ¼ 6:0, dashed line) and the MHDB (B0y ¼ 6:0, solid line)
cases at time t ¼ 0:2.
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dominated to magnetic pressure dominated. The Lorentz factor
results shown in Figure 5 (bottom left) indicate that a sufficiently
strong poloidal magnetic field in the jet region will allow a jet to
achieve � � 22, even if the jet is only ‘‘mildly’’ relativistic ini-
tially, i.e., �L � 7.We note that in the hydrodynamic cases inves-
tigated by Aloy & Rezzolla (2006) the Lorentz factor decreases
as the normal velocity increases (see their Fig. 4), while we find
that the Lorentz factor increases as the normal velocity increases.
Our result is different from that of Aloy & Rezzolla (2006) be-
cause their initial conditions were different. In particular, they
varied the initial normal velocity in the jet region while holding
the initial Lorentz factor constant.

The right panels in Figure 5 show the dependences of the max-
imum tangential and normal velocities and the Lorentz factor on
the strength of the toroidal (B0y) component of the magnetic field
as measured in the jet fluid frame. Again, the solid line indicates
values obtainedwith the code of Giacomazzo&Rezzolla (2006),
and the plus signs indicate values obtained from our simulations
at time t ¼ 0:2. When the toroidal magnetic field becomes large
in the jet region, the maximum normal velocity increases ini-
tially, then decreases when B0y > 4, and the maximum tangential
velocity increases. This dependence is opposite that of the po-
loidal magnetic field. The acceleration in the tangential direction
occurs due to the additional contribution of the Lorentz force
shown in Figure 4. When the toroidal magnetic field becomes
large in the jet region, the Lorentz force in the tangential direc-
tion increases and contributes to a large acceleration of the jet in
the tangential direction. The transition from gas pressure dom-
inated to magnetic pressure dominated left states occurs near
B0y ’ 4. This change from gas to magnetic pressure dominated is
reflected in the normal velocity profile. The acceleration is much
larger than that found in the comparable poloidal magnetic field
case. While at B

0
y ’ 20 the maximum Lorentz factor reaches

� � 72, at B0z ’ 20 the maximum Lorentz factor is only � � 22.

3.3. Multidimensional Simulations

To investigate the effects induced by more than one degree
of freedom, we perform 2D RMHD simulations of the MHDA
case (B0z ¼ 6:0). The computational domain corresponds to a
local part of the jet flow. In the simulations, a ‘‘preexisting’’ jet
flow is established across the computational domain. The ini-
tial condition is the same as that of the 1D MHDA case (e.g.,
V z ¼ 0:99c and B0z ¼ 6:0). In order to investigate a possible in-
fluence of the chosen coordinate system, we perform the calcula-
tions in Cartesian and cylindrical coordinates. The discontinuities
between the jet and the external medium are set at x or r ¼ 1:0
in the initial state (see Fig. 1). The computational domain is
0:5 � x, r � 1:5, and 0 � z � 5:0withNx; r ;Nz ¼ 2000 ; 250,
whereNx; r andNz are the number of computational zones in the
x- or r-direction and in the z-direction. We use a large number
of computational zones in the x- or r-direction in order to sat-
isfactorily resolve the shock profile. We impose periodic bound-
ary conditions in the z-direction and free boundary conditions in
the x- or r-direction. The computational domain is far from the jet
center in order to obtain high resolution near the jet surface. In
this case it is necessary to use free boundary conditions at the
inner boundary in x or r. Here we are far from the jet axis and
waves and fluid must be free to move toward the axis through
this boundary and not experience a reflection.
The initial condition for these 2D simulations is a simple ex-

tension of the 1DMHDA case into the z-direction and represents
the temporal development of a planar (Cartesian coordinates) or
cylindrical interface that is infinite in extent in the z-direction.
Effectively we consider a local part of a jet flow. Here we con-
sider only the poloidal magnetic field case as a uniformly over-
pressured cylindrical jet containing a uniform poloidal magnetic
field as physically valid. The toroidal magnetic field case in one
dimension cannot be compared to a proper cylindrical toroidal
magnetic field in which hoop stresses and radial gradients will
play a role.
Figure 6 shows 2D images of the Lorentz factor for the 2D

MHDA simulation in Cartesian and in cylindrical coordinates at
time t ¼ 0:6. The left-moving rarefaction waves do not reach
the inner boundary (x- or r-direction) so the choice of inner out-
flow boundary condition does not influence the results. In both
cases, a thin surface is accelerated by the MHD boost mecha-
nism to reach a maximum Lorentz factor � ’ 15 from an ini-
tial Lorentz factor �L ’ 7. The jet in cylindrical coordinates is
slightly more accelerated than the jet in Cartesian coordinates.
The presence of velocity shear between the jet and external
medium can excite Kelvin-Helmholtz (KH) instabilities (e.g.,
Ferrari et al. 1978; Hardee 1979, 1987, 2007; Birkinshaw
1991), and such instability might affect the relativistic boost
mechanism. However, we do not see any growth of the KH
instability during the simulation. This is because the simulation
duration is too short for KH instabilities to grow. But in longer
duration RMHD cylindrical jet simulations KH instabilities can
grow (Hardee 2007; Mizuno et al. 2007), which might signifi-
cantly affect the later stages of jet evolution.
In order to investigate the simulation results quantitatively, we

have taken 1D cuts through the computational box perpendicular
to the z-axis. Figure 7 shows the resulting profiles of gas pres-
sure, Lorentz factor (�), normal velocity (V x or V r), and tan-
gential velocity (V z) of the 2DMHDA cases in Cartesian (dotted
lines) and in cylindrical coordinates (dashed lines). The exact
solution of the 1DMHDA case is shown as solid lines. The result
consists of a right-moving fast shock, a right-moving contact dis-
continuity, and a left-moving fast rarefaction wave ( RFCSF!).

Fig. 5.—Dependence of maximum normal velocity (V x, top), maximum tan-
gential velocity (Vz, middle), and maximum Lorentz factor � ¼ ½1� (V x )2�
(V z )2��1/2 (bottom) on the strength of the z-component of magnetic field B0z (left)
and y-component of magnetic field B0y (right). The solid line indicates values ob-
tained using the code of Giacomazzo&Rezzolla (2006), and the plus signs indicate
the values obtained from our simulations at the time t ¼ 0:2.
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The profiles from the 2DMHDA simulation in Cartesian coordi-
nates match well those of the 1DMHDA case. In the 2DMHDA
simulation with cylindrical coordinates, the right-moving fast
shock (SF!) is weaker and the left-moving fast rarefaction wave
( RF ) is slightly stronger than those of the 2D MHDA simula-

tion with Cartesian coordinates. Selecting cylindrical coordinates
causes the normal velocity to decrease gradually in the expan-
sion. The tangential velocity in cylindrical coordinates (V z �
0:991530c) is slightly faster than in Cartesian coordinates (V z �
0:991500c). Thus, the jet Lorentz factor reaches � � 16 in cy-
lindrical coordinates and � � 15 in Cartesian coordinates. This
result suggests that different coordinate systems slightly affect
sideways expansion, shock profile, and acceleration.

4. SUMMARY AND DISCUSSION

We performed relativistic magnetohydrodynamic simulations
of an acceleration boosting mechanism for fast astrophysical
jet flows that result from highly overpressured, tenuous flows
with an initially modest relativistic speed relative to a colder,
denser external medium at rest. We employed the RAISHIN
code (Mizuno et al. 2006a) to study the relativistic boost mech-
anism proposed by Aloy & Rezzolla (2006), who showed that
hydrodynamic accelerations to � > 1000 are possible in the sit-
uation described above. For numerical reasons, we reduced the
pressure discontinuity between the hotter higher pressure jet and
colder lower pressure external medium and also reduced the
initial jet velocity (see the Appendix). Our results still show the
same behavior ( RCS!) found in Rezzolla et al. (2003) and
Aloy & Rezzolla (2006). The same hydrodynamical structures
emerge in our simulation, confirming the basic properties of
the boost mechanism proposed in their work. We subsequently
extended their investigation to study the effects of magnetic

Fig. 6.—Two-dimensional images of the Lorentz factor showing the (a) initial condition, (b) results of the 2DMHDA case in Cartesian coordinates, and (c) results of
the 2D MHDA case in cylindrical coordinates at time t ¼ 0:6. The color scales show the Lorentz factor. Arrows depict the poloidal velocities normalized to light speed.

Fig. 7.—Profiles of density (top left), Lorentz factor (bottom left), normal
velocity (V x, V r; top right), and tangential velocity (V z, bottom right) of the
2DMHDA case in Cartesian coordinates (dotted lines) and the 2DMHDA case
in cylindrical coordinates (dashed lines) at time t ¼ 0:6. The solid lines are the
exact solution of the 1D MHDA case at time t ¼ 0:6.
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fields that are parallel (poloidal) and perpendicular (toroidal)
to the flow direction but parallel to the interface.

Our simulations show that the presence of a magnetic field
in the jet can significantly change the properties of the outward
moving shock and inward moving rarefaction wave, and can in
fact result in even more efficient acceleration of the jet than in a
pure hydrodynamic case. In particular, the presence of a toroidal
magnetic field perpendicular to jet flow produces a stronger in-
ward moving rarefaction wave. This leads to acceleration from
� � 7 tok15 when the magnetic pressure is comparable to the
gas pressure. A comparable pure hydrodynamic case yields ac-
celeration to �P 12. Our results would indicate acceleration to
� � 100 for a case with magnetic pressure 40 times the gas pres-
sure. Thus, the magnetic field can in principle play an important
role in this relativistic boost mechanism.

We found that a jet with a flow-aligned poloidal field was
slightly more accelerated in cylindrical coordinates than one in
Cartesian coordinates, but in general our 1D and 2D results for the
poloidal field appear comparable. The current simple 2D MHD
simulation in cylindrical coordinates is directly applicable to a
3D cylindrical geometry where the magnetic field and jet flow
are aligned and tangent to the jet-external medium interface.
However, recent GRMHD simulations of jet formation predict
that the jet has a rotational velocity and considerable radial
structure (e.g., Nishikawa et al. 2005; Mizuno et al. 2006b;
De Villiers et al. 2005; Hawley & Krolik 2006; McKinney &
Gammie 2004; McKinney 2006). The effect of such radial struc-
ture on this boost mechanism is yet to be determined.

Our present results for the 1D toroidal field are not likely to
apply in a 3D cylindrical geometry, where a toroidal field exerts a
hoop stress that does not exist in the 1D configuration. It seems
likely that this hoop stress would so modify the sideways expan-
sion of an overpressured cylindrical jet as to render our present
toroidal field results not applicable unless the magnetic field in
three dimensions is tangled or the thin boost region is relatively
insensitive to radial gradients. In order to properly investigate
full 3D effects, it will be necessary to perform full 3D RMHD
simulations including toroidal and helical magnetic fields.

The initial conditions in our present 2D simulations are a sim-
ple extension of the 1D poloidal MHD case, which models a lo-
cal part of an overpressured jet flow in a colder denser ambient
and provides a first step toward multidimensional simulations.
To address the question of whether or not such strong, magneti-
cally enhanced boosts really do take place in astrophysical sources
(AGNs, quasars, microquasars, and gamma-ray bursts) will re-
quire additional numerical simulations to show that this process
can work for jets injected into a reasonable astrophysical envi-
ronment. The operation of theMHD boost is likely to be strongly
affected by the properties of the external medium, expected jet
overpressures, and spatial development of the jet flow and ex-
ternal medium downstream from the jet source. For example, it is
conceivable that magnetic pressure effects are more dominant
relative to thermal pressure effects in AGN jets where a magneti-

cally dominated ‘‘Poynting’’ flux jet is confined by a colder, denser
external medium. A hot GRB fireball can expand and accelerate
under its thermal pressure to reach large Lorentz factors as long
as baryon loading is small (Mészáros et al. 1993; Piran et al.
1993). Although this simple model can account for the large
(>100) Lorentz factors inferred for GRBs, it does not reflect more
realistic settings of complex GRB progenitor/central engine mod-
els. In the collapsar model for long-duration GRBs (Woosley
1993), the tenuous jet is believed to propagate in a surrounding
dense stellar envelope (Zhang et al. 2003), so that the hydrody-
namic configuration considered by Aloy & Rezzolla (2006) and
in this paper is naturally satisfied. A strong poloidal magnetic
field is likely present at the central engine. In some GRBmodels,
the flow is even dominated by a Poynting flux (Lyutikov 2006).
In this case the magnetohydrodynamic boost mechanism dis-
cussed here would then play an important role in jet acceleration.
The final Lorentz factor should depend on the detailed parame-
ters invoked in this mechanism as well as the unknown baryon
loading process during the propagation of the jet in the envelope.
In the case of short GRBs that may be of compact star merger
origin (e.g., Paczyński 1986; Nakar 2007), there is no dense stellar
envelope surrounding the jet. The jet region is nonetheless more
tenuous than the surrounding medium due to the centrifugal bar-
rier in the jet, so that the acceleration mechanism discussed here
still applies (see, e.g., Aloy et al. 2005 for the pure hydrodynamic
case). Due to a likely smaller baryon loading in the merger envi-
ronment, the jet may achieve an even higher Lorentz factor than
for the case of long GRBs, as suggested by some observations
(e.g., their harder spectrum and shorter spectral lags). The mag-
netohydrodynamic acceleration mechanism discussed here also
naturally yields a GRB jet with substantial angular structure. In
particular, since acceleration is favored in the rarefaction region
near the contact discontinuity, this mechanism naturally gives
rise to the kind of ring-shaped jet that has been discussed in some
empirical GRB models (e.g., Eichler & Levinson 2006).
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APPENDIX

RESOLUTION TESTS

A1. ONE-DIMENSIONAL SHOCK TUBE TESTS WITH TRANSVERSE VELOCITY

Recently it has been reported that it is numerically challenging to resolve 1D shock tube test problems with transverse velocities using
the same number of computational zones used in the absence of transverse velocities (Mignone & Bodo 2005; Zhang & MacFadyen
2006;Mizuta et al. 2006).We have performed a resolution study using from 800 to 12,800 uniform zones spanning Lx ¼ 1:0, where Lx is
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the simulation size in the x-direction, and we have used the initial conditions fromMignone&Bodo (2005) andMizuta et al. (2006) with
adiabatic index � ¼ 5/3 as follows.

Left state (0 < x < 0:5): �L ¼ 1:0, pL ¼ 1:0 ; 103, V x
L ¼ 0, and V z

L ¼ 0:9c.
Right state (0:5 < x < 1:0): �R ¼ 1:0, pR ¼ 1:0 ; 10�2, V x

R ¼ 0, and V z
R ¼ 0.

The results of numerical and analytical solutions to this test problem are shown in Figure 8. The left-going rarefaction ( R)
is resolved with good accuracy even at lower resolution. On the contrary, neither right-going shock nor contact discontinuities
(CS!) are resolved in both position and value in lower resolution calculations. In calculations with higher resolution (typically
Nx � 6400 over Lx ¼ 1:0) the shock front position is calculated correctly. However, there still remains some undershoot in V z at the
contact discontinuity.

Fig. 8.—Profiles of the shock tube test problemwith a transverse velocity at time t ¼ 0:4. The solid lines are the exact solution, and the dotted lines are the simulation
results. Different simulation resolutions are presented; the number of computational zones (Nx) is 800, 1600, 3200, 6400, and 12,800 from top to bottom, respectively.
The density, gas pressure, normal velocity (V x), and tangential velocity (V z) are shown.
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A2. ONE-DIMENSIONAL HYDRODYNAMIC RELATIVISTIC BOOST MODEL

We also performed a resolution study of the HDA case. The initial condition is described in Table 1. The simulations have been
performed using from 800 to 12,800 uniform zones spanning Lx ¼ 0:4, equivalent to using 2000Y32,000 uniform zones spanning
Lx ¼ 1:0.

The results of numerical and analytical solutions are shown in Figure 9. The left-going rarefaction ( R) is resolved to good accu-
racy at even the lowest resolution. On the other hand, the right-going shock (S!) is not sufficiently resolved in both position and value
in lower resolution calculations. Higher resolution calculations (Nx � 6400) determine the shock front position with good accuracy.
However, there still remains some overshoot in V x behind the right-going shock.

Fig. 9.—Profiles of the HDA case at time t ¼ 0:2. The solid lines are the exact solution, and the dotted lines are the simulation results. Different simulation resolutions
are presented; the number of computational zones (Nx) is 800, 1600, 3200, 6400, and 12,800 from top to bottom, respectively. The density, gas pressure, normal velocity
(V x), and tangential velocity (V z) are shown.
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We conclude from this study that the use of 6400 computational zones spanning Lx ¼ 0:4 used for our 1D simulations provides
excellent quantitative accuracy. The use of 2000 computational zones spanning Lx ¼ 1:0, equivalent to 800 zones spanning Lx ¼ 0:4,
provides sufficient quantitative accuracy for the comparison between 1D and 2D results.

A3. ONE-DIMENSIONAL HYDRODYNAMIC RELATIVISTIC BOOST MODEL (ALOY & REZZOLLA MODEL)

We have performed a resolution study of the 1D hydrodynamic relativistic boost model proposed by Aloy & Rezzolla (2006). The
simulations have been performed using from 800 to 12,800 uniform zones spanning Lx ¼ 0:4. Here we have used the initial density

Fig. 10.—Profiles of the hydrodynamic relativistic boost model proposed by Aloy & Rezzolla (2006) at time t ¼ 0:2. The solid lines are the exact solution, and the
dotted lines are the simulation results. Different simulation resolutions are presented; the number of computational zones (Nx) is 800, 1600, 3200, 6400, and 12,800 from
top to bottom, respectively. The density, gas pressure, normal velocity (Vx), and tangential velocity (Vz) are shown.
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and pressure conditions in the left and right states with adiabatic index � ¼ 5/3 from Aloy & Rezzolla (2006) but with a reduced
tangential velocity as follows.

Left state (�0:2 < x < 0:0): �L ¼ 1:0 ; 10�4, pL ¼ 1:0 ; 10�3, V x
L ¼ 0, and V z

L ¼ 0:99c.
Right state (0:0 < x < 0:2): �R ¼ 1:0 ; 10�2, pR ¼ 1:0 ; 10�6, V x

R ¼ 0, and V z
R ¼ 0.

The results of numerical and analytical solutions are shown in Figure 10. The left-going rarefaction ( R), right-going contact dis-
continuity, and shock (CS!) are not sufficiently resolved in both position and value in lower resolution calculations. Higher resolution
calculations (Nx > 6400) determine the position and value of the left-going rarefaction wave with good accuracy. However, even in
the highest resolution calculation (Nx ¼ 12; 800) still the right-going contact discontinuity and shock are not resolved. We conclude
from this study that in order to resolve the Aloy&Rezzolla model with good accuracy wewould have to perform simulations with much
higher resolution and employ the adaptive mesh refinement method like that used by Zhang & MacFadyen (2006) to obtain locally
higher resolution at the area where shocks and contact discontinuities exist, to save CPU time and memory.
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