2 research outputs found

    Tapping uncultured microorganisms through metagenomics for drug discovery

    Get PDF
    Natural products have been an important historical source of therapeutic agents. Microorganisms are major source of bioactive natural products, and several microbial products including antibiotics, anti-inflammatory, anti-tumour, immunosuppressants and others are currently used as therapeutic agents for human and  domestic animals. Most of these products were obtained from cultured environmental microorganisms. However, it is widely accepted that a very large majority of the microorganisms present in natural  environments are not readily cultured under laboratory conditions, and therefore are not accessible for drug  discovery. Metagenomics is a recent culture-independent approach that has been developed to access the  collective genomes of natural bacterial populations. It enables discovery of the diverse biosynthetic pathways encoded by diverse microbial assemblages that are known to be present in the environment but not-yet  cultured. Recently, several new bioactive molecules and proteins have been discovered using a metagenomic approach. This review highlights the recent methodologies, limitations, and applications of metagenomics for the discovery of new drugs. Moreover, it shows how a multidisciplinary approach combining metagenomics with other technologies can expedite and revolutionize drug discovery from diverse environmental microorganisms.Key words: Microbial diversity, metagenomics, natural products, drug discovery, microbial ecology

    Clonal diversity and antimicrobial resistance of Enterococcus faecalis isolated from endodontic infections

    Get PDF
    Background: Enterococcus faecalis is considered to be one of most prevalent species in the oral cavity, particularly in endodontic infections. The aim of the present study was to investigate the prevalence of E. faecalis in dental root canals, clonal diversity by restriction fragment length polymorphism (RFLP) and randomly amplified polymorphic DNA (RAPD-PCR) analysis, and the antibiotic susceptibility of E. faecalis isolates. Results: Among the bacterial strains isolated from dental root canal specimens (n = 82), E. faecalis was determined to have the highest prevalence followed by Streptococcus viridians, Leuconostoc mesenteroides, Staphylococcus aureus, Streptococcus mitis, and Pediococcus pentosaceus. Cluster analysis of RAPD-PCR and RFLP patterns of the E. faecalis isolates discriminated five and six different genotypes, respectively. Among the tested strains, 43%, 52% and 5% were susceptible, intermediate resistant, and resistant to erythromycin, respectively. In addition, one strain (E-12) was intermediate resistant to linezolid, and one isolate (E-16) was resistant to tetracycline. Interestingly, many of the intermediate resistant/resistant strains were grouped in clusters 5 and 6, according RAPD and to RFLP, respectively. Conclusions: E. faecalis demonstrated the highest prevalence in the tested dental root canal specimens collected from Saudi patients and were grouped into five to six different genotypes. Different levels of antimicrobial susceptibility were observed in the tested E. faecalis strains, which clearly indicated that although bacterial strains may be similar, point mutations can result in extreme susceptibility or resistance to various antibiotics. This phenomenon is a cause for concern for clinicians in the treatment of dental infections caused by E. faecalis
    corecore