14 research outputs found

    Performance of Lightweight Foamed Concrete with Waste Clay Brick as Coarse Aggregate

    Get PDF
    AbstractPerformances of lightweight foamed concretes that are made from partial substitution of waste clay brick as coarse aggregate has been investigated in this study. The research aims were to identify the properties and characteristic of lightweight foamed concrete using waste clay brick as alternative materials to reduce the depletion of normal coarse aggregate from granite. Four different percentages of concrete mixtures using new coarse aggregate have been prepared that consist of 25%, 50%, 75%, and 100% waste clay brick. Foamed were injected into concrete mixture to produce lightweight concrete with appropriate proportions. The samples have undergone several testing including compression test, water absorption test, workability test and density test. From the results obtained, lightweight concrete that were produced with 25% substitution of waste clay brick showed the highest compressive strength of 25MPa with density of 1647kg/m3

    Flexural Behaviour Of High Performance Slurry Infiltrated Fiber Reinforced Concerete With Different Curing Method.

    Get PDF
    In the conventional steel fiber reinforced concrete, the structure is fabricated by combining steel fiber to the concrete mix. By using this method, the volume fraction of fiber is limited. So in order to improve the properties of fiber reinforced concrete, slurry infiltrated fiber concrete was introduced. In this study, concrete slurry grades 80 is 3%, 4%, 5% and also the control sample without fiber. Sizes of prism used in this study are 100 x 100 x 500 mm. In order to determine the effect of the curing method, each sample with different volume friction were prepared for two types of curing method. Water curing and steam curing at temperatures of 80° Celsius and cured for 24 hours were applied. The prisms were tested by two-point load test until failure. The behaviors of the prisms were observed and the load-deflection was recorded. Based on the result, it was concluded that the optimum steel fiber content in this report was 5 % by volume friction which provided the highest flexural strength and deflection. The prisms with steam curing obtained lower flexural strength compared to the water curing prisms except for the control specimen

    The Effects of Bottom Ash from MSWI Used as Mineral Additions in Concrete

    Full text link
    Municipal solid waste incinerators (MSWI) produce by products which can be classified as bottom and fly ashes. The bottom ash accounts for 85–90 % of the solid product resulting from MSW combustion. The aimed of the present work is to study the effect of replacing partial of bottom ash were manufactured. Fresh and hardened properties of the concrete were compared in order to study the suitable cement-bottom ash replacement. Bottom ash was found to have some reactivity, but without greatly affecting the hydration process of OPC at 10 % replacement. However at more than 10 % replacement, the addition of bottom ash greatly affected strength

    A Properties of Municipal Solid Waste Incineration Fly Ash (IFA) And Cement Used in The Manufacturing of New Inventive Blended Cement

    Get PDF
    Municipal solid waste incinerator fly (IFA) ash is prone to accumulate high concentration heavy metals. Due to the increasing costs to treat remaining fly ash at the landfill, a lot of research has been done to recycle IFA. This study was focusing on the properties of IFA and cement as main raw materials in new inventive blended cement. The properties of blended cement were also being investigated. Properties of IFA and cement were examined through several test which includes density, specific gravity, X-Ray Fluorescence (XRF), Loss of Ignition (LOI) and through Toxicity Characteristic Leaching Procedure (TCLP) test. The density test and LOI test were also being done for the blended cement. From the tests for IFA and cement, it can be found that density the density of fly ash and cement that has been used for this study were found to be 0.76 g/cm3 and 3.67 g/cm3 respectively. Then, the specific gravity of fly ash and cement were 1.69 and 2.98, accordingly. XRF results shows that both materials have highest content of aluminium, silica and iron, as expected. LOI of fly ash and cement were found to be 17.33 % and 12.33 %, respectively. In terms of the leaching rates of heavy metals (Mn, Ni, Cd, Cr, Cu), only Cd leached at rate 2.39 mg/L, which is above the USEPA's regulatory level, 1.0 mg/L. 5 %, 10 % and 15 % of IFA was mixed with cement to produced blended cement. As the density of blended cement, it was found to be 1.12 g/cm3, 1.08 g/cm3 and 1.09 g/cm3 for each of 5 %, 10 % and 15 % of fly ash in blended cement

    Gender and communication issues in the Malaysian public universities

    Get PDF
    Gender and communication is a hot topic discussed and research on this topic is a never-ending effort. This study will discuss issues of gender and communication in the Malaysian public universities. Among the major items focused in this study is the advancement of women in the workforce, the major barriers that prevent women from climbing up the corporate ladder, and the management of conflict and anger in order to build a conducive and therapeutic work setting. The appointment of two women vice chancellors in the Malaysian public universities shows that the glass ceiling can be broken and women can excel further in the Malaysian workforce. This phenomenon indicates that women are also important in the policy-making and decision-making process in public universities

    A Properties of Municipal Solid Waste Incineration Fly Ash (IFA) And Cement Used in The Manufacturing of New Inventive Blended Cement

    Get PDF
    Municipal solid waste incinerator fly (IFA) ash is prone to accumulate high concentration heavy metals. Due to the increasing costs to treat remaining fly ash at the landfill, a lot of research has been done to recycle IFA. This study was focusing on the properties of IFA and cement as main raw materials in new inventive blended cement. The properties of blended cement were also being investigated. Properties of IFA and cement were examined through several test which includes density, specific gravity, X-Ray Fluorescence (XRF), Loss of Ignition (LOI) and through Toxicity Characteristic Leaching Procedure (TCLP) test. The density test and LOI test were also being done for the blended cement. From the tests for IFA and cement, it can be found that density the density of fly ash and cement that has been used for this study were found to be 0.76 g/cm3 and 3.67 g/cm3 respectively. Then, the specific gravity of fly ash and cement were 1.69 and 2.98, accordingly. XRF results shows that both materials have highest content of aluminium, silica and iron, as expected. LOI of fly ash and cement were found to be 17.33 % and 12.33 %, respectively. In terms of the leaching rates of heavy metals (Mn, Ni, Cd, Cr, Cu), only Cd leached at rate 2.39 mg/L, which is above the USEPA's regulatory level, 1.0 mg/L. 5 %, 10 % and 15 % of IFA was mixed with cement to produced blended cement. As the density of blended cement, it was found to be 1.12 g/cm3, 1.08 g/cm3 and 1.09 g/cm3 for each of 5 %, 10 % and 15 % of fly ash in blended cement

    The Stiffness of Steel-Wood-Steel Connection Loaded Parallel to the Grain

    Get PDF
    In Eurocode 5, the stiffness equation for bolted steel-wood-steel is stated as a function of wood density and fastener diameter only. In this research, an experimental study on various configurations of tested bolted steel-wood-steel (SWS) connections has been undertaken to predict the initial stiffness of each connection. In order to validate the Eurocode 5 stiffness equation, tests on 50 timber specimens (40 glued laminated timbers and 10 laminated veneer lumbers (LVL)) with steel plates were undertaken. The number of bolts was kept similar and the connector diameter, timber thickness, and wood density were varied. The results obtained in the experimental tests are compared with those obtained from the Eurocode 5 stiffness equation. From the analysis, it is signified that the stiffness equation specified in Eurocode 5 for bolted SWS connections does not adequately predict the initial stiffness. The results from Eurocode 5 stiffness equation are very far from the experimental values. The ratio of stiffness equation to experimental results ranges from 3.48 to 4.20, with the average at 3.77, where the equation overpredicted the experimental stiffness value for the connection. There is a need to consider or incorporated other parameters such as geometric configurations in Eurocode 5 stiffness equation to improve the ratio with the experimental data

    Properties of cold-bonded lightweight artificial aggregate containing bottom ash with different curing regime

    No full text
    Cold-bonded pelletizing technique is frequently used in aggregate manufacturing process as it can minimise the energy consumption. It has contributed to both economical and environmental advantages because it helps to reduce the gas emissions problems. Bottom ash collected from municipal solid waste incineration (MSWI) plant was selected as raw material in this study and was utilised as a partial replacement for cement for artificial aggregate production. Several percentage of ash replacement was selected ranged from 10 to 50%. Aggregate pellets were subjected to different types of curing condition which is room-water (RW), room-room (RR), oven-room (OR) and oven-water (OW) condition. Properties of aggregate pellets were examined to obtain its density, water absorption, aggregate impact value (AIV) and specific gravity (SG). The results indicated that the most efficient curing regime is by exposing the aggregate in RW condition. The optimum aggregate was selected at 20% where it has satisfied the required density of 739.5kg/m3, and classified as strong aggregate with AIV 14. However, the water absorption of aggregate increased proportionately with the increment of ash content

    Properties of cold-bonded lightweight artificial aggregate containing bottom ash with different curing regime

    No full text
    Cold-bonded pelletizing technique is frequently used in aggregate manufacturing process as it can minimise the energy consumption. It has contributed to both economical and environmental advantages because it helps to reduce the gas emissions problems. Bottom ash collected from municipal solid waste incineration (MSWI) plant was selected as raw material in this study and was utilised as a partial replacement for cement for artificial aggregate production. Several percentage of ash replacement was selected ranged from 10 to 50%. Aggregate pellets were subjected to different types of curing condition which is room-water (RW), room-room (RR), oven-room (OR) and oven-water (OW) condition. Properties of aggregate pellets were examined to obtain its density, water absorption, aggregate impact value (AIV) and specific gravity (SG). The results indicated that the most efficient curing regime is by exposing the aggregate in RW condition. The optimum aggregate was selected at 20% where it has satisfied the required density of 739.5kg/m3, and classified as strong aggregate with AIV 14. However, the water absorption of aggregate increased proportionately with the increment of ash content

    The Effects of Bottom Ash from MSWI Used as Mineral Additions in Concrete

    No full text
    Municipal solid waste incinerators (MSWI) produce by products which can be classified as bottom and fly ashes. The bottom ash accounts for 85–90 % of the solid product resulting from MSW combustion. The aimed of the present work is to study the effect of replacing partial of bottom ash were manufactured. Fresh and hardened properties of the concrete were compared in order to study the suitable cement-bottom ash replacement. Bottom ash was found to have some reactivity, but without greatly affecting the hydration process of OPC at 10 % replacement. However at more than 10 % replacement, the addition of bottom ash greatly affected strength
    corecore