96 research outputs found
Group Analysis of the Novikov Equation
We find the Lie point symmetries of the Novikov equation and demonstrate that
it is strictly self-adjoint. Using the self-adjointness and the recent
technique for constructing conserved vectors associated with symmetries of
differential equations, we find the conservation law corresponding to the
dilations symmetry and show that other symmetries do not provide nontrivial
conservation laws. Then we investigat the invariant solutions
Evolution of magnetic fields through cosmological perturbation theory
The origin of galactic and extra-galactic magnetic fields is an unsolved
problem in modern cosmology. A possible scenario comes from the idea of these
fields emerged from a small field, a seed, which was produced in the early
universe (phase transitions, inflation, ...) and it evolves in time.
Cosmological perturbation theory offers a natural way to study the evolution of
primordial magnetic fields. The dynamics for this field in the cosmological
context is described by a cosmic dynamo like equation, through the dynamo term.
In this paper we get the perturbed Maxwell's equations and compute the energy
momentum tensor to second order in perturbation theory in terms of gauge
invariant quantities. Two possible scenarios are discussed, first we consider a
FLRW background without magnetic field and we study the perturbation theory
introducing the magnetic field as a perturbation. The second scenario, we
consider a magnetized FLRW and build up the perturbation theory from this
background. We compare the cosmological dynamo like equation in both scenarios
Energy Content of Colliding Plane Waves using Approximate Noether Symmetries
This paper is devoted to study the energy content of colliding plane waves
using approximate Noether symmetries. For this purpose, we use approximate Lie
symmetry method of Lagrangian for differential equations. We formulate the
first-order perturbed Lagrangian for colliding plane electromagnetic and
gravitational waves. It is shown that in both cases, there does not existComment: 18 pages, accepted for publication in Brazilian J Physic
A unified approach to Poisson-Hopf deformations of Lie-Hamilton systems based on sl(2)
Producción CientíficaBased on a recently developed procedure to construct Poisson-Hopf deformations of Lie–Hamilton systems, a novel unified approach to nonequivalent deformations of Lie–Hamilton systems on the real plane with a Vessiot–Guldberg Lie algebra isomorphic to sl(2) is proposed. This, in particular, allows us to define a notion of Poisson–Hopf systems in dependence of a
parameterized family of Poisson algebra representations. Such an approach is explicitly illustrated by applying it to the three non-diffeomorphic classes of sl(2) Lie–Hamilton systems. Our results cover deformations of the Ermakov system, Milne–Pinney, Kummer–Schwarz and several Riccati equations as well as of the harmonic oscillator (all of them with t-dependent coefficients). Furthermore t-independent constants of motion are given as well. Our methods can be employed to generate other Lie–Hamilton systems and their deformations for other Vessiot–Guldberg Lie algebras and their deformations
- …