5 research outputs found

    Amplified Spontaneous Emission (ASE) Properties of a laser dye (LD-473) in solid state

    No full text
    The spectral characteristics of 1,2,3,8-tetrahydro-1,2,3,3,8-pentamethyl-5-(trifluoromethyl)-7H–pyrrolo[3,2-g]quinolin-7-one (LD-473) were demonstrated in liquid and solid states. For the liquid state, the absorption and fluorescence spectra of the LD-473 in Methyl Methacrylate showed bands at 385 and 420 nm, respectively. LD-473 in the solid state showed one absorption band at 530 nm, while the fluorescence spectra, under low concentration, showed one band at 615 nm. For higher concentrations, the fluorescence bands are shifted to the red. LD-473 in the solid state under an impulse of Nd: YAG laser showed dual amplified spontaneous emission (ASE) peaks at 605 and 650 nm. The longer wavelength coincided with a fluorescence peak while the shorter wavelength is an abnormal peak

    Amplified Spontaneous Emission (ASE) Properties of a laser dye (LD-473) in solid state

    No full text
    The spectral characteristics of 1,2,3,8-tetrahydro-1,2,3,3,8-pentamethyl-5-(trifluoromethyl)-7H–pyrrolo[3,2-g]quinolin-7-one (LD-473) were demonstrated in liquid and solid states. For the liquid state, the absorption and fluorescence spectra of the LD-473 in Methyl Methacrylate showed bands at 385 and 420 nm, respectively. LD-473 in the solid state showed one absorption band at 530 nm, while the fluorescence spectra, under low concentration, showed one band at 615 nm. For higher concentrations, the fluorescence bands are shifted to the red. LD-473 in the solid state under an impulse of Nd: YAG laser showed dual amplified spontaneous emission (ASE) peaks at 605 and 650 nm. The longer wavelength coincided with a fluorescence peak while the shorter wavelength is an abnormal peak

    Plasmonic Biosensors for the Detection of Lung Cancer Biomarkers: A Review

    No full text
    International audienceLung cancer is the most common and deadliest cancer type globally. Its early diagnosis can guarantee a five-year survival rate. Unfortunately, application of the available diagnosis methods such as computed tomography, chest radiograph, magnetic resonance imaging (MRI), ultrasound, low-dose CT scan, bone scans, positron emission tomography (PET), and biopsy is hindered due to one or more problems, such as phenotypic properties of tumours that prevent early detection, invasiveness, expensiveness, and time consumption. Detection of lung cancer biomarkers using a biosensor is reported to solve the problems. Among biosensors, optical biosensors attract greater attention due to being ultra-sensitive, free from electromagnetic interference, capable of wide dynamic range detection, free from the requirement of a reference electrode, free from electrical hazards, highly stable, capable of multiplexing detection, and having the potential for more information content than electrical transducers. Inspired by promising features of plasmonic sensors, including surface plasmon resonance (SPR), localised surface plasmon resonance (LSPR), and surface enhanced Raman scattering (SERS) such as ultra-sensitivity, single particle/molecular level detection capability, multiplexing capability, photostability, real-time measurement, label-free measurement, room temperature operation, naked-eye readability, and the ease of miniaturisation without sophisticated sensor chip fabrication and instrumentation, numerous plasmonic sensors for the detection of lung cancer biomarkers have been investigated. In this review, the principle plasmonic sensor is explained. In addition, novel strategies and modifications adopted for the detection of lung cancer biomarkers such as miRNA, carcinoembryonic antigen (CEA), cytokeratins, and volatile organic compounds (VOCs) using plasmonic sensors are also reported. Furthermore, the challenges and prospects of the plasmonic biosensors for the detection of lung cancer biomarkers are highlighted
    corecore