50 research outputs found

    Measurement of Prandtl number and thermal conductivity Summary report

    Get PDF
    Prandtl numbers and thermal conductivity of air, argon, and hydrocarbon fuel combustion product

    Direct Measurements of Colloidal Solvophoresis under Imposed Solvent and Solute Gradients

    Full text link
    We describe a microfluidic system that enables direct visualization and measurement of diffusiophoretic migration of colloids in response to imposed solution gradients. Such measurements have proven difficult or impossible in macroscopic systems due to difficulties in establishing solution gradients that are sufficiently strong yet hydrodynamically stable. We validate the system with measurements of the concentration-dependent diffusiophoretic mobility of polystyrene colloids in NaCl gradients, confirming that diffusiophoretic migration velocities are proportional to gradients in the logarithm of electrolyte concentration. We then perform the first direct measurement of the concentration-dependent "solvophoretic" mobility of colloids in ethanol-water gradients, whose dependence on concentration and gradient strength was not known either theoretically or experimentally, but which our measurements reveal to be proportional to the gradient in the logarithm of ethanol mole fraction. Finally, we examine solvophoretic migration under a variety of qualitatively distinct chemical gradients, including solvents that are miscible or have finite solubility with water, an electrolyte for which diffusiophoresis proceeds down concentration gradients (unlike for most electrolytes), and a nonelectrolyte (sugar). Our technique enables the direct characterization of diffusiophoretic mobilities of various colloids under various solvent and solute gradients, analogous to the electrophoretic ζ-potential measurements that are routinely used to characterize suspensions. We anticipate that such measurements will provide the feedback required to test and develop theories for solvophoretic and diffusiophoretic migration and ultimately to the conceptual design and engineering of particles that respond in a desired way to their chemical environments

    On the Nature of Geometric and Topological Phases in the Presence of Conical Intersections

    Get PDF
    The observable nature of topological phases related to conical intersections in molecules is studied. Topological phases should be ubiquitous in molecular processes, but their elusive character has often made them a topic of discussion. To shed some light on this issue, we simulate the dynamics governed by a Jahn–Teller Hamiltonian and analyze it employing two theoretical representations of the molecular wave function: the adiabatic and the exact factorization. We find fundamental differences between effects related to topological phases arising exclusively in the adiabatic representation, and thus not related to any physical observable, and geometric phases within the exact factorization that can be connected to an observable quantity. We stress that while the topological phase of the adiabatic representation is an intrinsic property of the Hamiltonian, the geometric phase of the exact factorization depends on the dynamics that the system undergoes and is connected to the circulation of the nuclear momentum field
    corecore