476 research outputs found
Polymorphism in cyclohexanol
The crystal structures and phase behaviour of phase II and the metastable phases III0 and III of cyclohexanol, C6H11OH,
have been determined using high-resolution neutron powder,
synchrotron X-ray powder and single-crystal X-ray diffraction techniques. Cyclohexanol-II is formed by a transition from the plastic phase I cubic structure at 265 K and crystallizes in a tetragonal structure, space group P�4421c (Z0 = 1), in which the molecules are arranged in a hydrogen-bonded tetrameric ring motif. The structures of phases III0 and III are monoclinic, space groups P21/c (Z0 = 3) and Pc (Z0 = 2), respectively, and are characterized by the formation of hydrogen-bonded molecular chains with a threefold-helical and wave-like nature, respectively. Phase III crystallizes at 195 K from a sample of phase I that is supercooled to ca 100 K. Alternatively, phase III may be grown via phase III0, the latter transforming from supercooled phase I at ca 200 K. Phase III0 is particularly unstable and is metastable with respect to both I and II. Its growth is realised only under very restricted conditions, thus making its characterization especially
challenging. The cyclohexanol molecules adopt a chair
conformation in all three phases with the hydroxyl groups in
an equatorial orientation. No evidence was found indicating
hydroxyl groups adopting an axial orientation, contrary to the majority of spectroscopic literature on solid-state cyclohexanol; however, the H atom of the equatorial OH groups is found to adopt both in-plane and out-of-plane orientations
Biological Characterization of Gene Response to Insulin-Induced Hypoglycemia in Mouse Retina.
Glucose is the most important metabolic substrate of the retina and maintenance of normoglycemia is an essential challenge for diabetic patients. Chronic, exaggerated, glycemic excursions could lead to cardiovascular diseases, nephropathy, neuropathy and retinopathy. We recently showed that hypoglycemia induced retinal cell death in mouse via caspase 3 activation and glutathione (GSH) decrease. Ex vivo experiments in 661W photoreceptor cells confirmed the low-glucose induction of death via superoxide production and activation of caspase 3, which was concomitant with a decrease of GSH content. We evaluate herein retinal gene expression 4 h and 48 h after insulin-induced hypoglycemia. Microarray analysis demonstrated clusters of genes whose expression was modified by hypoglycemia and we discuss the potential implication of those genes in retinal cell death. In addition, we identify by gene set enrichment analysis, three important pathways, including lysosomal function, GSH metabolism and apoptotic pathways. Then we tested the effect of recurrent hypoglycemia (three successive 4h periods of hypoglycemia spaced by 48 h recovery) on retinal cell death. Interestingly, exposure to multiple hypoglycemic events prevented GSH decrease and retinal cell death, or adapted the retina to external stress by restoring GSH level comparable to control situation. We hypothesize that scavenger GSH is a key compound in this apoptotic process, and maintaining "normal" GSH level, as well as a strict glycemic control, represents a therapeutic challenge in order to avoid side effects of diabetes, especially diabetic retinopathy
Electric-field tuning of the valley splitting in silicon corner dots
We perform an excited state spectroscopy analysis of a silicon corner dot in
a nanowire field-effect transistor to assess the electric field tunability of
the valley splitting. First, we demonstrate a back-gate-controlled transition
between a single quantum dot and a double quantum dot in parallel that allows
tuning the device in to corner dot formation. We find a linear dependence of
the valley splitting on back-gate voltage, from to with a slope of (or equivalently a slope
of with respect to the effective field). The
experimental results are backed up by tight-binding simulations that include
the effect of surface roughness, remote charges in the gate stack and discrete
dopants in the channel. Our results demonstrate a way to electrically tune the
valley splitting in silicon-on-insulator-based quantum dots, a requirement to
achieve all-electrical manipulation of silicon spin qubits.Comment: 5 pages, 3 figures. In this version: Discussion of model expanded;
Fig. 3 updated; Refs. added (15, 22, 32, 34, 35, 36, 37
Oxidative phosphorylation flexibility in the liver of mice resistant to high-fat diet-induced hepatic steatosis.
OBJECTIVE To identify metabolic pathways that may underlie susceptibility or resistance to high-fat diet-induced hepatic steatosis. RESEARCH DESIGN AND METHODS We performed comparative transcriptomic analysis of the livers of A/J and C57Bl/6 mice, which are, respectively, resistant and susceptible to high-fat diet-induced hepatosteatosis and obesity. Mice from both strains were fed a normal chow or a high-fat diet for 2, 10, and 30 days, and transcriptomic data were analyzed by time-dependent gene set enrichment analysis. Biochemical analysis of mitochondrial respiration was performed to confirm the transcriptomic analysis. RESULTS Time-dependent gene set enrichment analysis revealed a rapid, transient, and coordinate upregulation of 13 oxidative phosphorylation genes after initiation of high-fat diet feeding in the A/J, but not in the C57Bl/6, mouse livers. Biochemical analysis using liver mitochondria from both strains of mice confirmed a rapid increase by high-fat diet feeding of the respiration rate in A/J but not C57Bl/6 mice. Importantly, ATP production was the same in both types of mitochondria, indicating increased uncoupling of the A/J mitochondria. CONCLUSIONS Together with previous data showing increased expression of mitochondrial β-oxidation genes in C57Bl/6 but not A/J mouse livers, our present study suggests that an important aspect of the adaptation of livers to high-fat diet feeding is to increase the activity of the oxidative phosphorylation chain and its uncoupling to dissipate the excess of incoming metabolic energy and to reduce the production of reactive oxygen species. The flexibility in oxidative phosphorylation activity may thus participate in the protection of A/J mouse livers against the initial damages induced by high-fat diet feeding that may lead to hepatosteatosis
Magnetic stress as a driving force of structural distortions: the case of CrN
We show that the observed transition from rocksalt to orthorhombic P
symmetry in CrN can be understood in terms of stress anisotropy. Using local
spin density functional theory, we find that the imbalance between stress
stored in spin-paired and spin-unpaired Cr nearest neighbors causes the
rocksalt structure to be unstable against distortions and justifies the
observed antiferromagnetic ordering. This stress has a purely magnetic origin,
and may be important in any system where the coupling between spin ordering and
structure is strong.Comment: 4 pages (two columns) 4 figure
Gluco-incretins regulate beta-cell glucose competence by epigenetic silencing of Fxyd3 expression.
BACKGROUND/AIMS: Gluco-incretin hormones increase the glucose competence of pancreatic beta-cells by incompletely characterized mechanisms.
METHODS: We searched for genes that were differentially expressed in islets from control and Glp1r-/-; Gipr-/- (dKO) mice, which show reduced glucose competence. Overexpression and knockdown studies; insulin secretion analysis; analysis of gene expression in islets from control and diabetic mice and humans as well as gene methylation and transcriptional analysis were performed.
RESULTS: Fxyd3 was the most up-regulated gene in glucose incompetent islets from dKO mice. When overexpressed in beta-cells Fxyd3 reduced glucose-induced insulin secretion by acting downstream of plasma membrane depolarization and Ca++ influx. Fxyd3 expression was not acutely regulated by cAMP raising agents in either control or dKO adult islets. Instead, expression of Fxyd3 was controlled by methylation of CpGs present in its proximal promoter region. Increased promoter methylation reduced Fxyd3 transcription as assessed by lower abundance of H3K4me3 at the transcriptional start site and in transcription reporter assays. This epigenetic imprinting was initiated perinatally and fully established in adult islets. Glucose incompetent islets from diabetic mice and humans showed increased expression of Fxyd3 and reduced promoter methylation.
CONCLUSIONS/INTERPRETATION: Because gluco-incretin secretion depends on feeding the epigenetic regulation of Fxyd3 expression may link nutrition in early life to establishment of adult beta-cell glucose competence; this epigenetic control is, however, lost in diabetes possibly as a result of gluco-incretin resistance and/or de-differentiation of beta-cells that are associated with the development of type 2 diabetes
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
The adult mammalian heart has poor regenerative capacity. In contrast, the zebrafish heart retains a robust capacity for regeneration into adulthood. These distinct responses are consequences of a differential utilization of evolutionary-conserved gene regulatory networks in the damaged heart. To systematically identify miRNA-dependent networks controlling cardiac repair following injury, we performed comparative gene and miRNA profiling of the cardiac transcriptome in adult mice and zebrafish.
Using an integrated approach, we show that 45 miRNA-dependent networks, involved in critical biological pathways, are differentially modulated in the injured zebrafish vs. mouse hearts. We study, more particularly, the miR-26a-dependent response. Therefore, miR-26a is down-regulated in the fish heart after injury, whereas its expression remains constant in the mouse heart. Targets of miR-26a involve activators of the cell cycle and Ezh2, a component of the polycomb repressive complex 2 (PRC2). Importantly, PRC2 exerts repressive functions on negative regulators of the cell cycle. In cultured neonatal cardiomyocytes, inhibition of miR-26a stimulates, therefore, cardiomyocyte proliferation. Accordingly, miR-26a knockdown prolongs the proliferative window of cardiomyocytes in the post-natal mouse heart.
This novel strategy identifies a series of miRNAs and associated pathways, in particular miR-26a, which represent attractive therapeutic targets for inducing repair in the injured heart
Decreased STARD10 expression is associated with defective insulin secretion in humans and mice
Genetic variants near ARAP1 (CENTD2) and STARD10 influence type 2 diabetes (T2D) risk. The risk alleles impair glucose-induced insulin secretion and, paradoxically but characteristically, are associated with decreased proinsulin:insulin ratios, indicating improved proinsulin conversion. Neither the identity of the causal variants nor the gene(s) through which risk is conferred have been firmly established. Whereas ARAP1 encodes a GTPase activating protein, STARD10 is a member of the steroidogenic acute regulatory protein (StAR)-related lipid transfer protein family. By integrating genetic fine-mapping and epigenomic annotation data and performing promoter-reporter and chromatin conformational capture (3C) studies in β cell lines, we localize the causal variant(s) at this locus to a 5 kb region that overlaps a stretch-enhancer active in islets. This region contains several highly correlated T2D-risk variants, including the rs140130268 indel. Expression QTL analysis of islet transcriptomes from three independent subject groups demonstrated that T2D-risk allele carriers displayed reduced levels of STARD10 mRNA, with no concomitant change in ARAP1 mRNA levels. Correspondingly, β-cell-selective deletion of StarD10 in mice led to impaired glucose-stimulated Ca2+ dynamics and insulin secretion and recapitulated the pattern of improved proinsulin processing observed at the human GWAS signal. Conversely, overexpression of StarD10 in the adult β cell improved glucose tolerance in high fat-fed animals. In contrast, manipulation of Arap1 in β cells had no impact on insulin secretion or proinsulin conversion in mice. This convergence of human and murine data provides compelling evidence that the T2D risk associated with variation at this locus is mediated through reduction in STARD10 expression in the β cell
Competition between Magnetic and Structural Transition in CrN
CrN is observed to undergo a paramagnetic to antiferromagnetic transition
accompanied by a shear distortion from cubic NaCl-type to orthorhombic
structure. Our first-principle plane wave and ultrasoft pseudopotential
calculations confirm that the distorted antiferromagnetic phase with spin
configuration arranged in double ferromagnetic sheets along [110] is the most
stable. Antiferromagnetic ordering leads to a large depletion of states around
Fermi level, but it does not open a gap. Simultaneous occurence of structural
distortion and antiferromagnetic order is analyzed.Comment: 10 pages, 10 figure
Transcriptional response to cardiac injury in the zebrafish: systematic identification of genes with highly concordant activity across in vivo models
Background: Zebrafish is a clinically-relevant model of heart regeneration. Unlike mammals, it has a remarkable heart repair capacity after injury, and promises novel translational applications. Amputation and cryoinjury models are key research tools for understanding injury response and regeneration in vivo. An understanding of the transcriptional responses following injury is needed to identify key players of heart tissue repair, as well as potential targets for boosting this property in humans. Results: We investigated amputation and cryoinjury in vivo models of heart damage in the zebrafish through unbiased, integrative analyses of independent molecular datasets. To detect genes with potential biological roles, we derived computational prediction models with microarray data from heart amputation experiments. We focused on a top-ranked set of genes highly activated in the early post-injury stage, whose activity was further verified in independent microarray datasets. Next, we performed independent validations of expression responses with qPCR in a cryoinjury model. Across in vivo models, the top candidates showed highly concordant responses at 1 and 3 days post-injury, which highlights the predictive power of our analysis strategies and the possible biological relevance of these genes. Top candidates are significantly involved in cell fate specification and differentiation, and include heart failure markers such as periostin, as well as potential new targets for heart regeneration. For example, ptgis and ca2 were overexpressed, while usp2a, a regulator of the p53 pathway, was down-regulated in our in vivo models. Interestingly, a high activity of ptgis and ca2 has been previously observed in failing hearts from rats and humans. Conclusions: We identified genes with potential critical roles in the response to cardiac damage in the zebrafish. Their transcriptional activities are reproducible in different in vivo models of cardiac injury. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-852) contains supplementary material, which is available to authorized users
- …
