5,680 research outputs found

    The Interest Rate-Exchange Rate Link in the Mexican Float

    Get PDF
    This paper examines empirically the interest rate-exchange rate link in the context of the Mexican experience with a floating exchange regime. The impulse response function derived from an ECM estimated by GMM reveals a lasting positive effect of a currency depreciation on the peso-dollar interest rate differential. Some of the macroeconomic consequences from this pattern are discussed, together with a possible explanation based on the incorporation of the central bank reaction function into private expectations.interest rate-exchange rate link, floating exchange rate regimes

    Neutrino properties from Yukawa structure

    Get PDF
    We discuss the implications for lepton mixing and CP violation of structure in the lepton mass matrices, for the case that neutrino masses are generated by the see-saw mechanism with an hierarchical structure for the Majorana masses. For a particularly interesting case with enhanced symmetry in which the lepton Dirac mass matrices are related to those in the quark sector, the CHOOZ angle is near the present limit and the CP violating phase relevant to thermal leptogenesis and to Îœ0ÎČÎČ\nu 0 \beta \beta decay is near maximal.Comment: 13 pages, 7 figures. References added and typos corrected. Mistake in the discussion of leptogenesis correcte

    PAMELA's cosmic positron from decaying LSP in SO(10) SUSY GUT

    Full text link
    We propose two viable scenarios explaining the recent observations on cosmic positron excess. In both scenarios, the present relic density in the Universe is assumed to be still supported by thermally produced WIMP or LSP (\chi). One of the scenarios is based on two dark matter (DM) components (\chi,X) scenario, and the other is on SO(10) SUSY GUT. In the two DM components scenario, extremely small amount of non-thermally produced meta-stable DM component [O(10^{-10}) < n_X /n_\chi] explains the cosmic positron excess. In the SO(10) model, extremely small R-parity violation for LSP decay to e^\pm is naturally achieved with a non-zero VEV of the superpartner of one right-handed neutrino (\tilde{\nu}^c) and a global symmetry.Comment: 6 pages, Talks presented in PASCOS, SUSY, and COSMO/CosPA in 201

    Theoretical Constraints on the Vacuum Oscillation Solution to the Solar Neutrino Problem

    Get PDF
    The vacuum oscillation (VO) solution to the solar anomaly requires an extremely small neutrino mass splitting, Delta m^2_{sol}\leq 10^{-10} eV^2. We study under which circumstances this small splitting (whatever its origin) is or is not spoiled by radiative corrections. The results depend dramatically on the type of neutrino spectrum. If m_1^2 \sim m_2^2 \geq m_3^2, radiative corrections always induce too large mass splittings. Moreover, if m_1 and m_2 have equal signs, the solar mixing angle is driven by the renormalization group evolution to very small values, incompatible with the VO scenario (however, the results could be consistent with the small-angle MSW scenario). If m_1 and m_2 have opposite signs, the results are analogous, except for some small (though interesting) windows in which the VO solution may be natural with moderate fine-tuning. Finally, for a hierarchical spectrum of neutrinos, m_1^2 << m_2^2 << m_3^2, radiative corrections are not dangerous, and therefore this scenario is the only plausible one for the VO solution.Comment: 13 pages, LaTeX, 3 ps figures (psfig.sty

    Computing with cells: membrane systems - some complexity issues.

    Full text link
    Membrane computing is a branch of natural computing which abstracts computing models from the structure and the functioning of the living cell. The main ingredients of membrane systems, called P systems, are (i) the membrane structure, which consists of a hierarchical arrangements of membranes which delimit compartments where (ii) multisets of symbols, called objects, evolve according to (iii) sets of rules which are localised and associated with compartments. By using the rules in a nondeterministic/deterministic maximally parallel manner, transitions between the system configurations can be obtained. A sequence of transitions is a computation of how the system is evolving. Various ways of controlling the transfer of objects from one membrane to another and applying the rules, as well as possibilities to dissolve, divide or create membranes have been studied. Membrane systems have a great potential for implementing massively concurrent systems in an efficient way that would allow us to solve currently intractable problems once future biotechnology gives way to a practical bio-realization. In this paper we survey some interesting and fundamental complexity issues such as universality vs. nonuniversality, determinism vs. nondeterminism, membrane and alphabet size hierarchies, characterizations of context-sensitive languages and other language classes and various notions of parallelism
    • 

    corecore