22 research outputs found

    Quantum algorithm and circuit design solving the Poisson equation

    Get PDF
    The Poisson equation occurs in many areas of science and engineering. Here we focus on its numerical solution for an equation in d dimensions. In particular we present a quantum algorithm and a scalable quantum circuit design which approximates the solution of the Poisson equation on a grid with error \varepsilon. We assume we are given a supersposition of function evaluations of the right hand side of the Poisson equation. The algorithm produces a quantum state encoding the solution. The number of quantum operations and the number of qubits used by the circuit is almost linear in d and polylog in \varepsilon^{-1}. We present quantum circuit modules together with performance guarantees which can be also used for other problems.Comment: 30 pages, 9 figures. This is the revised version for publication in New Journal of Physic

    Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: algorithms and result

    Get PDF
    Cross-scanner and cross-protocol variability of diffusion magnetic resonance imaging (dMRI) data are known to be major obstacles in multi-site clinical studies since they limit the ability to aggregate dMRI data and derived measures. Computational algorithms that harmonize the data and minimize such variability are critical to reliably combine datasets acquired from different scanners and/or protocols, thus improving the statistical power and sensitivity of multi-site studies. Different computational approaches have been proposed to harmonize diffusion MRI data or remove scanner-specific differences. To date, these methods have mostly been developed for or evaluated on single b-value diffusion MRI data. In this work, we present the evaluation results of 19 algorithms that are developed to harmonize the cross-scanner and cross-protocol variability of multi-shell diffusion MRI using a benchmark database. The proposed algorithms rely on various signal representation approaches and computational tools, such as rotational invariant spherical harmonics, deep neural networks and hybrid biophysical and statistical approaches. The benchmark database consists of data acquired from the same subjects on two scanners with different maximum gradient strength (80 and 300 ​mT/m) and with two protocols. We evaluated the performance of these algorithms for mapping multi-shell diffusion MRI data across scanners and across protocols using several state-of-the-art imaging measures. The results show that data harmonization algorithms can reduce the cross-scanner and cross-protocol variabilities to a similar level as scan-rescan variability using the same scanner and protocol. In particular, the LinearRISH algorithm based on adaptive linear mapping of rotational invariant spherical harmonics features yields the lowest variability for our data in predicting the fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK) and the rotationally invariant spherical harmonic (RISH) features. But other algorithms, such as DIAMOND, SHResNet, DIQT, CMResNet show further improvement in harmonizing the return-to-origin probability (RTOP). The performance of different approaches provides useful guidelines on data harmonization in future multi-site studies

    Mapping of meteorological observations over the island of Ireland to enhance the understanding and prediction of rain erosion in wind turbine blades

    No full text
    Leading edge erosion is becoming increasingly important as wind turbine size and rainfall are predicted to increase. Understanding environmental conditions is key for laboratory testing, maintenance schedules and lifetime estimations to be improved, which in turn could reduce costs. This paper uses weather data in conjunction with a rain texture model and wind turbine RPM curve to predict and characterise rain erosion conditions across Ireland during rainfall events in terms of droplet size, temperature, humidity and chemical composition, as well as the relative erosivity, in terms of number of annual impacts and kinetic energy, as well as seasonal variations in these properties. Using a linear regression, the total annual kinetic energy, mean temperature and the mean humidity during impact are mapped geospatially. The results indicate that the west coast of Ireland and elevated regions are more erosive with higher kinetic energy. During rain events, northern regions tend to have lower temperatures and lower humidities and mountainous regions have lower temperatures and higher humidities. Irish rain has high levels of sea salt, and in recent years, only a slightly acidic pH. Most erosion likely occurs during winters with frequent rain infused with salt due to increased winds. After this analysis, it is concluded that Ireland’s largest wind park (Galway) is placed in a moderate-highly erosive environment and that RET protocols should be revisited

    Detection of pyrethroid resistance mutations and intron variants in the voltage-gated sodium channel of Aedes (Stegomyia) aegypti and Ae. (Stegomyia) albopictus mosquitoes from Lao People's Democratic Republic

    No full text
    In Lao People's Democratic Republic (PDR), Aedes aegypti (Linnaeus 1762) and Ae. albopictus (Skuse 1894) mosquitoes (Diptera: Culicidae) are vectors of arboviral diseases such as dengue. As the treatment for these diseases are limited, control of the vectors with the use of pyrethroid insecticides is still essential. However, mutations in the voltage-gated sodium channel gene (vgsc) giving rise to pyrethroid resistance is threatening vector control programs. Here, we analyzed both Ae. aegypti and Ae. albopictus mosquitoes collected in different districts of Laos (Kaysone Phomvihane, Vangvieng, Saysettha and Xaythany) for vgsc mutations commonly found throughout Asia (S989P, V1016G and F1534C). Sequences of the vgsc gene showed that the F1534C mutation was prevalent in both Aedes species. S989P and V1016G mutations were detected in Ae. aegypti from each site and were always found together. In addition, the mutation T1520I was seen in Ae. albopictus mosquitoes from Saysettha district as well as in all Ae. aegypti samples. Thus, mutations in the vgsc gene of Ae. aegypti are prevalent in the four districts studied indicating growing insecticide resistance throughout Laos. Constant monitoring programmes and alternative strategies for controlling Aedes should be utilized in order to prolong the effectiveness of pyrethroids thereby maximizing vector control
    corecore