25 research outputs found

    Altered gut microbiota and endocannabinoid system tone in vitamin D deficiency-mediated chronic pain

    Get PDF
    Abstract Recent evidence points to the gut microbiota as a regulator of brain and behavior, although it remains to be determined if gut bacteria play a role in chronic pain. The endocannabinoid system is implicated in inflammation and chronic pain processing at both the gut and central nervous system (CNS) levels. In the present study, we used low Vitamin D dietary intake in mice and evaluated possible changes in gut microbiota, pain processing and endocannabinoid system signaling. Vitamin D deficiency induced a lower microbial diversity characterized by an increase in Firmicutes and a decrease in Verrucomicrobia and Bacteroidetes. Concurrently, vitamin D deficient mice showed tactile allodynia associated with neuronal hyperexcitability and alterations of endocannabinoid system members (endogenous mediators and their receptors) at the spinal cord level. Changes in endocannabinoid (anandamide and 2-arachidonoylglycerol) levels were also observed in the duodenum and colon. Remarkably, the anti-inflammatory anandamide congener, palmitoylethanolamide, counteracted both the pain behaviour and spinal biochemical changes in vitamin D deficient mice, whilst increasing the levels of Akkermansia, Eubacterium and Enterobacteriaceae, as compared with vehicle-treated mice. Finally, induction of spared nerve injury in normal or vitamin D deficient mice was not accompanied by changes in gut microbiota composition. Our data suggest the existence of a link between Vitamin D deficiency – with related changes in gut bacterial composition – and altered nociception, possibly via molecular mechanisms involving the endocannabinoid and related mediator signaling systems

    2-Pentadecyl-2-oxazoline ameliorates memory impairment and depression-like behaviour in neuropathic mice: possible role of adrenergic alpha2- and H3 histamine autoreceptors

    Get PDF
    Neuropathic pain (NP) remains an untreatable disease due to the complex pathophysiology that involves the whole pain neuraxis including the forebrain. Sensory dysfunctions such as allodynia and hyperalgesia are only part of the symptoms associated with neuropathic pain that extend to memory and affectivity deficits. The development of multi-target molecules might be a promising therapeutic strategy against the symptoms associated with NP. 2-pentadecyl-2-oxazoline (PEA-OXA) is a plant-derived agent, which has shown effectiveness against chronic pain and associated neuropsychiatric disorders. The molecular mechanisms by which PEA-OXA exerts its effects are, however, only partially known. In the current study, we show that PEA-OXA, besides being an alpha2 adrenergic receptor antagonist, also acts as a modulator at histamine H3 receptors, and report data on its effects on sensory, affective and cognitive symptoms associated with the spared nerve injury (SNI) model of neuropathic pain in mice. Treatment for 14 days with PEA-OXA after the onset of the symptoms associated with neuropathic pain resulted in the following effects: (i) allodynia was decreased; (ii) affective/cognitive impairment associated with SNI (depression, spatial, and working memories) was counteracted; (iii) long-term potentiation in vivo in the lateral entorhinal cortex-dentate gyrus (perforant pathway, LPP) was ameliorated, (iv) hippocampal glutamate, GABA, histamine, norepinephrine and dopamine level alterations after peripheral nerve injury were reversed, (v) expression level of the TH positive neurons in the Locus Coeruleus were normalized. Thus, a 16-day treatment with PEA-OXA alleviates the sensory, emotional, cognitive, electrophysiological and neurochemical alterations associated with SNI-induced neuropathic pain

    Oral Cannabidiol Prevents Allodynia and Neurological Dysfunctions in a Mouse Model of Mild Traumatic Brain Injury

    Get PDF
    Neurological dysfunctions are the most impactful and persistent consequences of traumatic brain injury (TBI). Indeed, previous reports suggest that an association between TBI and chronic pain syndromes, as well anxio-depressive behaviors, tends to be more common in patients with mild forms of TBI. At present, no effective treatment options are available for these symptoms. In the present study, we used a weight drop mild TBI mouse model to investigate the effect of a commercially available 10% Cannabidiol (CBD) oil on both the sensorial and neuropsychiatric dysfunctions associated with mild TBI through behavioral and biomolecular approaches. TBI mice developed chronic pain associated with anxious and aggressive behavior, followed by a late depressive-like behavior and impaired social interaction. Such behaviors were related with specific changes in neurotransmitters release at cortical levels. CBD oral treatment restored the behavioral alterations and partially normalized the cortical biochemical changes. In conclusion, our data show some of the brain modifications probably responsible for the behavioral phenotype associated with TBI and suggest the CBD as a pharmacological tool to improve neurological dysfunctions caused by the trauma

    Cannabidiol in traumatic brain injury

    No full text
    Following injury, the endocannabinoid system is activated in the brain suggesting a strategic role in the self-repair mechanisms. Indeed endocannabinoid system manipulation ameliorates traumatic brain injury (TBI) symptoms. Cannabidiol (CBD), together with △9-tetrahydrocannabinol (THC), is the main phytocannabinoid extracted from the plant Cannabis sativa, and it plays anti-inflammatory, antioxidant, neuroprotective, anticonvulsant, hypnotic, and antiemetic effects and has proven to be useful in neuropsychiatric, neurodegenerative, post-traumatic stress, and ischemic disorders. Unlike THC, CBD is not psychoactive and enhances the beneficial and reduces the side effects of THC. CBD has negligible action on cannabinoid receptors and modulates the endocannabinoid system throughout the inhibition of endocannabinoid degradation and reuptake. It also stimulates serotonin 1A (5-HT1A), adenosine 2A (A2A), transient receptor potential vanilloid subtype 1 (TRPV1), and nuclear peroxisome proliferator-activated receptor γ (PPARγ). We collect in this chapter all the preclinical and clinical evidence on the beneficial effects of CBD in the TBI considering it important for two main reasons: the lack of effective therapy for the TBI and the good tolerability of the CBD

    Metabotropic Glutamate Receptor 5 and 8 Modulate the Ameliorative Effect of Ultramicronized Palmitoylethanolamide on Cognitive Decline Associated with Neuropathic Pain

    No full text
    This study investigated whether metabotropic glutamate receptor (mGluR) 5 and 8 are involved in the effect of ultramicronizedpalmitoylethanolamide (um-PEA) on the cognitive behavior and long term potentiation (LTP) at entorhinal cortex (LEC)-dentate gyrus (DG) pathway in mice rendered neuropathic by the spare nerve injury (SNI). SNI reduced discriminative memory and LTP. Um-PEA treatment started after the development of neuropathic pain had no effects in sham mice, whereas it restored cognitive behavior and LTP in SNI mice. 2-Methyl-6-(phenylethynyl) pyridine (MPEP), a selective mGluR5 antagonist, improved cognition in SNI mice and produced a chemical long term depression of the field excitatory postsynaptic potentials (fEPSPs) in sham and SNI mice. After theta burst stimulation (TBS) MPEP restored LTP in SNI mice. In combination with PEA, MPEP antagonized the PEA effect on discriminative memory and decreased LTP in SNI mice. The (RS)-4-(1-amino-1-carboxyethyl)phthalic acid (MDCPG), a selective mGluR8 antagonist, did not affect discriminative memory, but it induced a chemical LTP and prevented the enhancement of fEPSPs after TBS in SNI mice which were treated or not treated with PEA. The effect of PEA on LTP and cognitive behavior was modulated by mGluR5 and mGluR8. In particular in the SNI conditions, the mGluR5 blockade facilitated memory and LTP, but prevented the beneficial effects of PEA on discriminative memory while the mGluR8 blockade, which was ineffective in itself, prevented the favorable action of the PEA on LTP. Thus, although their opposite roles (excitatory/inhibitory of the two receptor subtypes on the glutamatergic system), they appeared to be required for the neuroprotective effect of PEA in conditions of neuropathic pain

    Behavioral, Biochemical and Electrophysiological Changes in Spared Nerve Injury Model of Neuropathic Pain

    No full text
    Neuropathic pain is a pathological condition induced by a lesion or disease affecting the somatosensory system, with symptoms like allodynia and hyperalgesia. It has a multifaceted pathogenesis as it implicates several molecular signaling pathways involving peripheral and central nervous systems. Affective and cognitive dysfunctions have been reported as comorbidities of neuropathic pain states, supporting the notion that pain and mood disorders share some common pathogenetic mechanisms. The understanding of these pathophysiological mechanisms requires the development of animal models mimicking, as far as possible, clinical neuropathic pain symptoms. Among them, the Spared Nerve Injury (SNI) model has been largely characterized in terms of behavioral and functional alterations. This model is associated with changes in neuronal firing activity at spinal and supraspinal levels, and induces late neuropsychiatric disorders (such as anxious-like and depressive-like behaviors, and cognitive impairments) comparable to an advanced phase of neuropathy. The goal of this review is to summarize current findings in preclinical research, employing the SNI model as a tool for identifying pathophysiological mechanisms of neuropathic pain and testing pharmacological agent
    corecore