13 research outputs found

    A precise optical transmission spectrum of the inflated exoplanet WASP-52b

    Full text link
    We have measured a precise optical transmission spectrum for WASP-52b, a highly inflated hot Jupiter with an equilibrium temperature of 1300 K. Two transits of the planet were observed spectroscopically at low resolution with the auxiliary-port camera (ACAM) on the William Herschel Telescope (WHT), covering a wide range of 4000-8750 \AA. We use a Gaussian process approach to model the correlated noise in the multi-wavelength light curves, resulting in a high precision relative transmission spectrum with errors on the order of a pressure scale height. We attempted to fit a variety of different representative model atmospheres to the transmission spectrum, but did not find a satisfactory match to the entire spectral range. For the majority of the covered wavelength range (4000-7750 \AA) the spectrum is flat, and can be explained by an optically thick and grey cloud layer at 0.1 mbar, but this is inconsistent with a slightly deeper transit at wavelengths >7750> 7750 \AA. We were not able to find an obvious systematic source for this feature, so this opacity may be the result of an additional unknown absorber.Comment: Submitted to MNRAS 17 Jan 2017, revised version after comments from reviewer, 12 pages, 10 figure

    A Survey of Eclipsing Binary Stars in the Eastern Spiral Arm of M31

    Full text link
    Results of an archival survey are presented using B-band imaging of the eastern spiral arm of M31. Focusing on the eclipsing binary star population, a matched-filter technique has been used to identify 280 binary systems. Of these, 127 systems (98 of which are newly discovered) have sufficient phase coverage to allow accurate orbital periods to be determined. At least nine of these binaries are detached systems which could, in principle, be used for distance determination. The light curves of the detached and other selected systems are presented along with a discussion of some of the more interesting binaries. The impact of unresolved stellar blends on these lightcurves is considered.Comment: 10 pages, accepted for publication in MNRA

    Fourier analysis of unequally-spaced time series : with applications to the study of helium stars and binary systems

    Get PDF
    The application of the discrete Fourier transform to the determination of the frequency content of unevenly-sampled astronomical time series is discussed, and an interactive computer package which incorporates a variety of power-spectrum and time-domain techniques is described. A frequency analysis of the light curves of two hot, extreme helium stars, BD-9°4395 and HD160641, shows that their photometric variability is caused by non-radial pulsation. Spectroscopic evidence in support of non-uniform mass loss is presented for BD-9°4395. Spectroscopic and photometric observations of two early-type eclipsing binary systems, AL Sculptoris and DM Persei, have been analysed to yield their absolute dimensions. AL Scl is found to be a detached system in which both components rotate faster than synchronism. The origin of distortions in its light curve is unclear. DH Per is shown to be part of a triple system in which the third component is most probably a late-B star in a 98-day orbit with a semi-major axis of 0.9 A.U. The binary system is confirmed to be semi-detached and to have evolved through a phase of rapid mass transfer. DH Per joins a small group of massive, semi-detached systems whose characteristics differ significantly from the classical Algols, and which may result from case-A, mass-transfer processes. Spectroscopic and photometric observations of the F4V star HD123058 do not support the hypothesis that it is a binary system. Broad lines in its spectrum are attributed to a somewhat enhanced rotation rate, and the star is shown to be essentially unevolved. The derivation of the equation of condition in Sterne's rigorous method for the analysis of the spectroscopic elements of binary systems, and its modification for incorporating observed times of minimum light into the adjustment of the elements, are outlined. A computer code for the determination of orbital elements according to this scheme is described

    Searching for transit timing variations in transiting exoplanet systems

    Full text link
    Searching for transit timing variations in the known transiting exoplanet systems can reveal the presence of other bodies in the system. Here we report such searches for two transiting exoplanet systems, TrES-1 and WASP-2. Their new transits were observed with the 4.2m William Herschel Telescope located on La Palma, Spain. In a continuing programme, three consecutive transits were observed for TrES-1, and one for WASP-2 during September 2007. We used the Markov Chain Monte Carlo simulations to derive transit times and their uncertainties. The resulting transit times are consistent with the most recent ephemerides and no conclusive proof of additional bodies in either system was found.Comment: To appear in the Proceedings of the 253rd IAU Symposium: "Transiting Planets", May 2008, Cambridge, MA. 4 pages, 3 figures, 1 tabl

    ACCESS & LRG-BEASTS: a precise new optical transmission spectrum of the ultrahot Jupiter WASP-103b

    Full text link
    We present a new ground-based optical transmission spectrum of the ultrahot Jupiter WASP-103b (Teq=2484T_{eq} = 2484K). Our transmission spectrum is the result of combining five new transits from the ACCESS survey and two new transits from the LRG-BEASTS survey with a reanalysis of three archival Gemini/GMOS transits and one VLT/FORS2 transit. Our combined 11-transit transmission spectrum covers a wavelength range of 3900--9450A with a median uncertainty in the transit depth of 148 parts-per-million, which is less than one atmospheric scale height of the planet. In our retrieval analysis of WASP-103b's combined optical and infrared transmission spectrum, we find strong evidence for unocculted bright regions (4.3σ4.3\sigma) and weak evidence for H2_2O (1.9σ1.9\sigma), HCN (1.7σ1.7\sigma), and TiO (2.1σ2.1\sigma), which could be responsible for WASP-103b's observed temperature inversion. Our optical transmission spectrum shows significant structure that is in excellent agreement with the extensively studied ultrahot Jupiter WASP-121b, for which the presence of VO has been inferred. For WASP-103b, we find that VO can only provide a reasonable fit to the data if its abundance is implausibly high and we do not account for stellar activity. Our results highlight the precision that can be achieved by ground-based observations and the impacts that stellar activity from F-type stars can have on the interpretation of exoplanet transmission spectra.Comment: 33 pages, 17 figures, 7 tables. Accepted for publication in A

    The thermal emission of the exoplanets WASP-1b and WASP-2b

    Full text link
    We present a comparative study of the thermal emission of the transiting exoplanets WASP-1b and WASP-2b using the Spitzer Space Telescope. The two planets have very similar masses but suffer different levels of irradiation and are predicted to fall either side of a sharp transition between planets with and without hot stratospheres. WASP-1b is one of the most highly irradiated planets studied to date. We measure planet/star contrast ratios in all four of the IRAC bands for both planets (3.6-8.0um), and our results indicate the presence of a strong temperature inversion in the atmosphere of WASP-1b, particularly apparent at 8um, and no inversion in WASP-2b. In both cases the measured eclipse depths favor models in which incident energy is not redistributed efficiently from the day side to the night side of the planet. We fit the Spitzer light curves simultaneously with the best available radial velocity curves and transit photometry in order to provide updated measurements of system parameters. We do not find significant eccentricity in the orbit of either planet, suggesting that the inflated radius of WASP-1b is unlikely to be the result of tidal heating. Finally, by plotting ratios of secondary eclipse depths at 8um and 4.5um against irradiation for all available planets, we find evidence for a sharp transition in the emission spectra of hot Jupiters at an irradiation level of 2 x 10^9 erg/s/cm^2. We suggest this transition may be due to the presence of TiO in the upper atmospheres of the most strongly irradiated hot Jupiters.Comment: 10 pages, submitted to Ap

    The Astropy Problem

    Get PDF
    The Astropy Project (http://astropy.org) is, in its own words, "a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python astronomy packages." For five years this project has been managed, written, and operated as a grassroots, self-organized, almost entirely volunteer effort while the software is used by the majority of the astronomical community. Despite this, the project has always been and remains to this day effectively unfunded. Further, contributors receive little or no formal recognition for creating and supporting what is now critical software. This paper explores the problem in detail, outlines possible solutions to correct this, and presents a few suggestions on how to address the sustainability of general purpose astronomical software

    Sustainability of bioenergy – mapping the risks and benefits to inform future bioenergy systems

    Get PDF
    Bioenergy is widely included in energy strategies for its GHG mitigation potential. Bioenergy technologies will likely have to be deployed at scale to meet decarbonisation targets, and consequently biomass will have to be increasingly grown/mobilised. Sustainability risks associated with bioenergy may intensify with increasing deployment and where feedstocks are sourced through international trade. This research applies the Bioeconomy Sustainability Indicator Model (BSIM) to map and analyse the performance of bioenergy across 126 sustainability issues, evaluating 16 bioenergy case studies that reflect the breadth of biomass resources, technologies, energy vectors and bio-products. The research finds common trends in sustainability performance across projects that can inform bioenergy policy and decision making. Potential sustainability benefits are identified for People (jobs, skills, income, energy access); for Development (economy, energy, land utilisation); for Natural Systems (soil, heavy metals), and; for Climate Change (emissions, fuels). Also, consistent trends of sustainability risks where focus is required to ensure the viability of bioenergy projects, including for infrastructure, feedstock mobilisation, techno-economics and carbon stocks. Emission mitigation may be a primary objective for bioenergy, this research finds bioenergy projects can provide potential benefits far beyond emissions - there is an argument for supporting projects based on the ecosystem services and/or economic stimulation they may deliver. Also given the broad dynamics and characteristics of bioenergy projects, a rigid approach of assessing sustainability may be incompatible. Awarding ‘credit’ across a broader range of sustainability indicators in addition to requiring minimum performances in key areas, may be more effective at ensuring bioenergy sustainability
    corecore