250 research outputs found

    Dynamic response of land use and river nutrient concentration to long-term climatic changes

    Get PDF
    The combined indirect and direct impacts of land use change and climate change on river water quality were assessed. A land use allocation model was used to evaluate the response of the catchment land use to long-term climatic changes. Its results were used to drive a water quality model and assess the impact of climatic alterations on freshwater nitrate and phosphorus concentrations. Climatic projections were employed to estimate the likelihood of such response. The River Thames catchment (UK) was used as a case-study. If land use is considered as static parameter, according to the model results, climate change alone should reduce the average nitrate concentration, although just by a small amount, by the 2050s in the Lower Thames, due to reduced runoff (and lower export of nitrate from agricultural soils) and increased instream denitrification, and should increase the average phosphorus concentration by 12% by the 2050s in the Lower Thames, due to a reduction of the effluent dilution capacity of the river flow. However, the results of this study also show that these long-term climatic alterations are likely to lead to a reduction in the arable land in the Thames, replaced by improved grassland, due to a decrease in agriculture profitability in the UK. Taking into account the dynamic co-evolution of land use with climate, the average nitrate concentration is expected to be decreased by around 6% by the 2050s in both the upper and the lower Thames, following the model results, and the average phosphorus concentration increased by 13% in the upper Thames and 5% in the lower Thames. On the long term (2080s), nitrate is expected to decrease by 9% and 8% (upper and lower Thames respectively) and phosphorus not to change in the upper thames and increase by 5% in the lower Thames

    The c-Myc Oncoprotein Interacts with Bcr

    Get PDF
    AbstractBcr is a multifunctional protein that is the fusion partner for Abl (p210 Bcr-Abl) in Philadelphia chromosome positive leukemias. We have identified c-Myc as a binding partner for Bcr in both yeast and mammalian cells. We are also able to observe interactions between natively expressed c-Myc and Bcr in leukemic cell lines. Although Bcr and Max have overlapping binding sites on c-Myc, Bcr cannot interact with Max, or with the c-Myc•Max heterodimer. Bcr expression blocks activation of c-Myc-responsive genes, as well as the transformed phenotype induced by coexpression of c-Myc and H-Ras, and this finding suggests that one function of Bcr is to limit the activity of c-Myc. However, Bcr does not block c-Myc function by preventing its nuclear localization. Interestingly, increased Bcr dosage in COS-7 and K-562 cells correlates with a reduction in c-Myc protein levels, suggesting that Bcr may in fact be limiting c-Myc activity by regulating its stability. These data indicate that Bcr is a novel regulator of c-Myc function whose disrupted expression may contribute to the high level of c-Myc protein that is observed in Bcr-Abl transformed cells

    CDC42 and FGD1 Cause Distinct Signaling and Transforming Activities

    Get PDF
    Activated forms of different Rho family members (CDC42, Rac1, RhoA, RhoB, and RhoG) have been shown to transform NIH 3T3 cells as well as contribute to Ras transformation. Rho family guanine nucleotide exchange factors (GEFs) (also known as Dbl family proteins) that activate CDC42, Rac1, and RhoA also demonstrate oncogenic potential. The faciogenital dysplasia gene product, FGD1, is a Dbl family member that has recently been shown to function as a CDC42-specific GEF. Mutations within theFGD1locus cosegregate with faciogenital dysplasia, a multisystemic disorder resulting in extensive growth impairments throughout the skeletal and urogenital systems. Here we demonstrate that FGD1 expression is sufficient to cause tumorigenic transformation of NIH 3T3 fibroblasts. Although both FGD1 and constitutively activated CDC42 cooperated with Raf and showed synergistic focus-forming activity, both quantitative and qualitative differences in their functions were seen. FGD1 and CDC42 also activated common nuclear signaling pathways. However, whereas both showed comparable activation of c-Jun, CDC42 showed stronger activation of serum response factor and FGD1 was consistently a better activator of Elk-1. Although coexpression of FGD1 with specific inhibitors of CDC42 function demonstrated the dependence of FGD1 signaling activity on CDC42 function, FGD1 signaling activities were not always consistent with the direct or exclusive stimulation of CDC42 function. In summary, FGD1 and CDC42 signaling and transformation are distinct, thus suggesting that FGD1 may be mediating some of its biological activities through non-CDC42 targets

    Lfc and Lsc Oncoproteins Represent Two New Guanine Nucleotide Exchange Factors for the Rho GTP-binding Protein

    Get PDF
    Lfc and Lsc are two recently identified oncoproteins that contain a Dbl homology domain in tandem with a pleckstrin homology domain and thus share sequence similarity with a number of other growth regulatory proteins including Dbl, Tiam-1, and Lbc. We show here that Lfc and Lsc, like their closest relative Lbc, are highly specific guanine nucleotide exchange factors (GEFs) for Rho, causing a >10-fold stimulation of [3H]GDP dissociation from Rho and a marked stimulation of GDP-[35S]GTPgammas (guanosine 5'-O-(3-thiotriphosphate) exchange. All three proteins (Lbc, Lfc, and Lsc) are able to act catalytically in stimulating the guanine nucleotide exchange activity, such that a single molecule of each of these oncoproteins can activate a number of molecules of Rho. Neither Lfc nor Lsc shows any ability to stimulate GDP dissociation from other related GTP-binding proteins such as Rac, Cdc42, or Ras. Thus Lbc, Lfc, and Lsc appear to represent a subgroup of Dbl-related proteins that function as highly specific GEFs toward Rho and can be distinguished from Dbl, Ost, and Dbs which are less specific and show GEF activity toward both Rho and Cdc42. Consistent with these results, Lbc, Lfc, and Lsc each form tight complexes with the guanine nucleotide-depleted form of Rho and bind weakly to the GDP- and GTPgammaS-bound states. None of these oncoproteins are able to form complexes with Cdc42 or Ras. However, Lfc (but not Lbc nor Lsc) can bind to Rac, and this binding occurs equally well when Rac is nucleotide-depleted or is in the GDP- or GTPgammaS-bound state. These findings raise the possibility that in addition to acting directly as a GEF for Rho, Lfc may play other roles that influence the signaling activities of Rac and/or coordinate the activities of the Rac and Rho proteins

    Functional Analysis of Cdc42 Residues Required for Guanine Nucleotide Exchange

    Get PDF
    Guanine nucleotide exchange factors (GEFs) directly engage small GTPases to facilitate the exchange of bound GDP for GTP, leading to GTPase activation. Several recent crystal structures of GEFs in complex with Rho family GTPases highlight the conserved interactions and conformational alterations necessary for catalyzing exchange. In the present study, functional roles were defined for specific residues within Cdc42 implicated by the crystal structures as important for physiological exchange of guanine nucleotides within Rho GTPases. In particular, this study highlights the paramount importance of the phosphate-binding loop and interactions with the magnesium co-factor as critical for proper regulation of RhoGEF-catalyzed exchange. Other conformational alterations of the GTPases affecting interactions with the sugar and base of guanine nucleotides are also important but are secondary. Of particular note, substitution of alanine for cysteine at position 18 of Cdc42 leads to a fast cycling phenotype for Cdc42 with heightened affinity for RhoGEFs and produces a dominant negative form of Cdc42 capable of inhibiting RhoGEFs both in vitro and in vivo

    Expression Cloning of lsc , a Novel Oncogene with Structural Similarities to the Dbl Family of Guanine Nucleotide Exchange Factors

    Get PDF
    In a screen for genes with oncogenic potential expressed by the murine B6SUtA1 myeloid progenitor cell line, we isolated a 2. 5-kilobase pair cDNA whose expression causes strong morphological transformation and deregulated proliferation of NIH 3T3 cells. The transforming cDNA encodes a truncated protein (designated Lsc) with a region of sequence similarity to the product of the lbc oncogene. This region includes the tandem Dbl homology and pleckstrin homology domains that are hallmarks of the Dbl-like proteins, a family of presumptive or demonstrated guanine nucleotide exchange factors that act on Rho family GTPases. Lsc requires intact Dbl homology and pleckstrin homology domains for its oncogenic activity. The transforming activity of Lsc in NIH 3T3 cells is reduced by cotransfection with p190 (a GTPase activating protein for Rho family GTPases) and the Rho family dominant-negative mutants RhoA(19N), CDC42(17N), and Rac1(17N). These results indicate a role for the Rho family of GTPases in mediating the transforming activity of Lsc and are consistent with the exchange specificities that have been attributed to Dbl family members. The lsc gene is expressed in a variety of tissues and is particularly abundant in hemopoietic tissues (thymus, spleen, and bone marrow). Lsc is a member of a growing family of proteins that may function as activators of Rho family GTPases in a developmental or tissue-specific manner

    Regulation of RasGRP via a Phorbol Ester-Responsive C1 Domain

    Get PDF
    As part of a cDNA library screen for clones that induce transformation of NIH 3T3 fibroblasts, we have isolated a cDNA encoding the murine homolog of the guanine nucleotide exchange factor RasGRP. A point mutation predicted to prevent interaction with Ras abolished the ability of murine RasGRP (mRasGRP) to transform fibroblasts and to activate mitogen-activated protein kinases (MAP kinases). MAP kinase activation via mRasGRP was enhanced by coexpression of H-, K-, and N-Ras and was partially suppressed by coexpression of dominant negative forms of H- and K-Ras. The C terminus of mRasGRP contains a pair of EF hands and a C1 domain which is very similar to the phorbol ester- and diacylglycerol-binding C1 domains of protein kinase Cs. The EF hands could be deleted without affecting the ability of mRasGRP to transform NIH 3T3 cells. In contrast, deletion of the C1 domain or an adjacent cluster of basic amino acids eliminated the transforming activity of mRasGRP. Transformation and MAP kinase activation via mRasGRP were restored if the deleted C1 domain was replaced either by a membrane-localizing prenylation signal or by a diacylglycerol- and phorbol ester-binding C1 domain of protein kinase C. The transforming activity of mRasGRP could be regulated by phorbol ester when serum concentrations were low, and this effect of phorbol ester was dependent on the C1 domain of mRasGRP. The C1 domain could also confer phorbol myristate acetate-regulated transforming activity on a prenylation-defective mutant of K-Ras. The C1 domain mediated the translocation of mRasGRP to cell membranes in response to either phorbol ester or serum stimulation. These results suggest that the primary mechanism of activation of mRasGRP in fibroblasts is through its recruitment to diacylglycerol-enriched membranes. mRasGRP is expressed in lymphoid tissues and the brain, as well as in some lymphoid cell lines. In these cells, RasGRP has the potential to serve as a direct link between receptors which stimulate diacylglycerol-generating phospholipase Cs and the activation of Ras

    Multifunctional Roles for the PH Domain of Dbs in Regulating Rho GTPase Activation

    Get PDF
    Dbl family members are guanine nucleotide exchange factors specific for Rho guanosine triphosphatases (GTPases) and invariably possess tandem Dbl (DH) and pleckstrin homology (PH) domains. Dbs, a Dbl family member specific for Cdc42 and RhoA, exhibits transforming activity when overexpressed in NIH 3T3 mouse fibroblasts. In this study, the PH domain of Dbs was mutated to impair selectively either guanine nucleotide exchange or phosphoinositide binding in vitro and resulting physiological alterations were assessed. As anticipated, substitution of residues within the PH domain of Dbs integral to the interface with GTPases reduced nucleotide exchange and eliminated the ability of Dbs to transform NIH 3T3 cells. More interestingly, substitutions within the PH domain that prevent interaction with phosphoinositides yet do not alter in vitro activation of GTPases also do not transform NIH 3T3 cell and fail to activate RhoA in vivo despite proper subcellular localization. Therefore, the PH domain of Dbs serves multiple roles in the activation of GTPases and cannot be viewed as a simple membrane-anchoring device. In particular, the data suggest that binding of phosphoinositides to the PH domain within the context of membrane surfaces may direct orientations or conformations of the linked DH and PH domains to regulate GTPases activation
    corecore