1,258 research outputs found

    Quasiparticles in the Kondo lattice model at partial fillings of the conduction band

    Get PDF
    We study the spectral properties of the one-dimensional Kondo lattice model as function of the exchange coupling, the band filling, and the quasimomentum in the ferromagnetic and paramagnetic phase. Using the density-matrix renormalization group method, we compute the dispersion relation of the quasiparticles, their lifetimes, and the Z-factor. As a main result, we provide evidence for the existence of the spinpolaron at partial band fillings. We find that the quasiparticle lifetime differs by orders of magnitude between the ferromagnetic and paramagnetic phase and depends strongly on the quasimomentum.Comment: 9 pages, 9 figure

    Assessment in higher education : the potential for a community of practice to improve inter-marker reliability

    Get PDF
    The design, delivery and assessment of a complete educational scheme, such as a degree programme or a professional qualification course, is a complex matter. Maintaining alignment between the stated aims of the curriculum and the scoring of student achievement is an overarching concern. The potential for drift across individual aspects of an educational scheme (teaching, learning and assessment), together with emerging criticism in extant literature of the reliability of marking processes, suggests that, in practice, maintaining alignment might be more difficult than had previously been assumed. In this paper, the concept of a Community of Practice (CoP) is employed as an analytical lens through which the notion of a markers’ standardisation meeting that focuses on maintaining alignment between the curriculum, the marking scheme and the scoring of student scripts can be critically examined. Given that the aims and subject content of management learning are both multidimensional and contextual, such meetings have the potential to develop a shared approach to the elaboration and application of the marking scheme. A further role of the CoP is in the calibration of markers to accommodate further variations in student responses as they arise in the actual marking process. In this respect, the CoP has both descriptive and prescriptive potential in terms of aiding the development of markers of professional accounting examinations and also, we suggest, within accounting education more generally

    A simple method for construction of pir+ Enterobacterial hosts for maintenance of R6K replicon plasmids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The R6K replicon is one of the best studied bacterial plasmid replicons. Replication of the R6K plasmid and derivatives harboring its γ origin of replication (<it>ori</it><sub>R6Kγ</sub>) is dependent on the <it>pir </it>gene-encoded π protein. Originally encoded by R6K, this protein is usually provided <it>in trans </it>in hosts engineered to support replication of plasmids harboring <it>ori</it><sub>R6Kγ</sub>. In <it>Escherichia coli </it>this is commonly achieved by chromosomal integration of <it>pir </it>either via lysogenization with a λ<it>pir </it>phage or homologous recombination at a pre-determined locus.</p> <p>Findings</p> <p>Current methods for construction of host strains for <it>ori</it><sub>R6Kγ</sub>-containing plasmids involve procedures that do not allow selection for presence of the <it>pir </it>gene and require cumbersome and time-consuming screening steps. In this study, we established a mini-Tn<it>7</it>-based method for rapid and reliable construction of <it>pir</it><sup>+ </sup>host strains. Using a curable mini-Tn<it>7 </it>delivery plasmid, <it>pir </it>expressing derivatives of several commonly used <it>E. coli </it>cloning and mobilizer strains were isolated using both the wild-type <it>pir<sup>+ </sup></it>gene as well as the copy-up <it>pir-116 </it>allele. In addition, we isolated <it>pir</it><sup>+ </sup>and <it>pir-116 </it>expressing derivatives of a clinical isolate of <it>Salmonella enterica </it>serovar Typhimurium. In both <it>E. coli </it>and <it>S. enterica </it>serovar Typhimurium, the presence of the <it>pir<sup>+ </sup></it>wild-type or <it>pir-116 </it>alleles allowed the replication of <it>ori</it><sub>R6Kγ</sub>-containing plasmids.</p> <p>Conclusions</p> <p>A mini-Tn<it>7 </it>system was employed for rapid and reliable engineering of <it>E. coli </it>and <it>S. enterica </it>serovar Typhimurium host strains for plasmids containing <it>ori</it><sub>R6Kγ</sub>. Since mini-Tn7 elements transpose in most, if not all, Gram negative bacteria, we anticipate that with relatively minor modifications this newly established method will for the first time allow engineering of other bacterial species to enable replication of plasmids with <it>ori</it><sub>R6Kγ</sub>.</p

    Estimation of Absolute States of Human Skeletal Muscle via Standard B-Mode Ultrasound Imaging and Deep Convolutional Neural Networks

    Get PDF
    Objective: To test automated in vivo estimation of active and passive skeletal muscle states using ultrasonic imaging. Background: Current technology (electromyography, dynamometry, shear wave imaging) provides no general, non-invasive method for online estimation of skeletal muscle states. Ultrasound (US) allows non-invasive imaging of muscle, yet current computational approaches have never achieved simultaneous extraction nor generalisation of independently varying, active and passive states. We use deep learning to investigate the generalizable content of 2D US muscle images. Method: US data synchronized with electromyography of the calf muscles, with measures of joint moment/angle were recorded from 32 healthy participants (7 female, ages: 27.5, 19-65). We extracted a region of interest of medial gastrocnemius and soleus using our prior developed accurate segmentation algorithm. From the segmented images, a deep convolutional neural network was trained to predict three absolute, driftfree, components of the neurobiomechanical state (activity, joint angle, joint moment) during experimentally designed, simultaneous, independent variation of passive (joint angle) and active (electromyography) inputs. Results: For all 32 held-out participants (16-fold cross-validation) the ankle joint angle, electromyography, and joint moment were estimated to accuracy 55±8%, 57±11%, and 46±9% respectively. Significance: With 2D US imaging, deep neural networks can encode in generalizable form, the activitylength-tension state relationship of these muscles. Observation only, low power, 2D US imaging can provide a new category of technology for non-invasive estimation of neural output, length and tension in skeletal muscle. This proof of principle has value for personalised muscle assessment in pain, injury, neurological conditions, neuropathies, myopathies and ageing

    Global Genetic Diversity of Human Metapneumovirus Fusion Gene

    Get PDF
    We analyzed 64 human metapneumovirus strains from eight countries. Phylogenetic analysis identified two groups (A and B, amino acid identity 93%–96%) and four subgroups. Although group A strains predominated, accounting for 69% of all strains, as many B as A strains were found in persons >3 years of age

    Newfoundland Neogene sediment drifts: transition from the Paleogene greenhouse to the modern icehouse

    Get PDF
    This workshop brought together specialists from various fields to develop a drilling proposal to fill the "Oligo-Miocene Gap" that exists in our understanding of the functions of Earth's systems. We propose to establish the first continuous high-deposition record of the Oligo-Miocene through new International Ocean Discovery Program (IODP) drilling in the North Atlantic to allow the development of a continuous Neogene cyclostratigraphy and to enhance our knowledge of Oligo-Miocene ocean–ice–climate dynamics. The workshop was held in Heidelberg from 15 to 17 September 2014 funded by ESF (EARTHTIME EU), NSF, and the ECORD MagellanPlus Workshop Series Program. A total of 24 participants from six different countries (Australia, France, Germany, the Netherlands, United Kingdom, and United States) attended the workshop, including several early career stage researchers. We discussed certain aspects of Cenozoic paleoceanography and paleoclimate and how the gaps in the Oligo-Miocene could be filled using scientific drilling. The ultimate goal of the workshop (to submit a pre-proposal to IODP) was achieved (IODP Proposal 874-pre was submitted 1 October 2014). Our workshop consisted of overview presentations followed by self-selected breakout groups that discussed different topics and produced text and figures for the proposal. Here, we give a short overview of the major topics discussed during the workshop and the scientific goals presented in the resulting IODP pre-proposal

    Methods for genetic manipulation of Burkholderia gladioli pathovar cocovenenans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Burkholderia gladioli </it>pathovar <it>cocovenenans </it>(BGC) is responsible for sporadic food-poisoning outbreaks with high morbidity and mortality in Asian countries. Little is known about the regulation of virulence factor and toxin production in BGC, and studies in this bacterium have been hampered by lack of genetic tools.</p> <p>Findings</p> <p>Establishment of a comprehensive antibiotic susceptibility profile showed that BGC strain ATCC33664 is susceptible to a number of antibiotics including aminoglycosides, carbapenems, fluoroquinolones, tetracyclines and trimethoprim. In this study, we established that gentamicin, kanamycin and trimethoprim are good selection markers for use in BGC. Using a 10 min method for preparation of electrocompetent cells, the bacterium could be transformed by electroporation at high frequencies with replicative plasmids containing the pRO1600-derived origin of replication. These plasmids exhibited a copy number of > 100 in BGC. When co-conjugated with a transposase expressing helper plasmid, mini-Tn<it>7 </it>vectors inserted site- and orientation-specifically at a single <it>glmS</it>-associated insertion site in the BGC genome. Lastly, a <it>Himar1 </it>transposon was used for random transposon mutagenesis of BGC.</p> <p>Conclusions</p> <p>A series of genetic tools previously developed for other Gram-negative bacteria was adapted for use in BGC. These tools now facilitate genetic studies of this pathogen and allow establishment of toxin biosynthetic pathways and their genetic regulation.</p
    corecore