465 research outputs found

    Low Frequency Ultrasonic Voice Activity Detection using Convolutional Neural Networks

    Get PDF
    Low frequency ultrasonic mouth state detection uses reflected audio chirps from the face in the region of the mouth to determine lip state, whether open, closed or partially open. The chirps are located in a frequency range just above the threshold of human hearing and are thus both inaudible as well as unaffected by interfering speech, yet can be produced and sensed using inexpensive equipment. To determine mouth open or closed state, and hence form a measure of voice activity detection, this recently invented technique relies upon the difference in the reflected chirp caused by resonances introduced by the open or partially open mouth cavity. Voice activity is then inferred from lip state through patterns of mouth movement, in a similar way to video-based lip-reading technologies. This paper introduces a new metric based on spectrogram features extracted from the reflected chirp, with a convolutional neural network classification back-end, that yields excellent performance without needing the periodic resetting of the template closed-mouth reflection required by the original technique

    Square-rich fixed point polynomial evaluation on FPGAs

    Get PDF
    Polynomial evaluation is important across a wide range of application domains, so significant work has been done on accelerating its computation. The conventional algorithm, referred to as Horner's rule, involves the least number of steps but can lead to increased latency due to serial computation. Parallel evaluation algorithms such as Estrin's method have shorter latency than Horner's rule, but achieve this at the expense of large hardware overhead. This paper presents an efficient polynomial evaluation algorithm, which reforms the evaluation process to include an increased number of squaring steps. By using a squarer design that is more efficient than general multiplication, this can result in polynomial evaluation with a 57.9% latency reduction over Horner's rule and 14.6% over Estrin's method, while consuming less area than Horner's rule, when implemented on a Xilinx Virtex 6 FPGA. When applied in fixed point function evaluation, where precision requirements limit the rounding of operands, it still achieves a 52.4% performance gain compared to Horner's rule with only a 4% area overhead in evaluating 5th degree polynomials

    Efficient multi-standard cognitive radios on FPGAs

    Get PDF
    Cognitive radios that support multiple standards and modify operation depending on environmental conditions are becoming more important as the demand for higher bandwidth and efficient spectrum use increases. Traditional implementations in custom ASICs cannot support such flexibility, with standards changing at a faster pace, while software baseband implementations fail to achieve the performance required. Hence, FPGAs offer an ideal platform bringing together flexibility, performance, and efficiency. This work explores the possible techniques for designing multi-standard radios on FPGAs, and explores how partial reconfiguration can be leveraged in a way that is amenable for domain experts with minimal FPGA knowledge

    Shaping spectral leakage for IEEE 802.11 p vehicular communications

    Get PDF
    IEEE 802.11p is a recently defined standard for the physical (PHY) and medium access control (MAC) layers for Dedicated Short-Range Communications. Four Spectrum Emission Masks (SEMs) are specified in 802.11p that are much more stringent than those for current 802.11 systems. In addition, the guard interval in 802.11p has been lengthened by reducing the bandwidth to support vehicular communication (VC) channels, and this results in a narrowing of the frequency guard. This raises a significant challenge for filtering the spectrum of 802.11p signals to meet the specifications of the SEMs. We investigate state of the art pulse shaping and filtering techniques for 802.11p, before proposing a new method of shaping the 802.11p spectral leakage to meet the most stringent, class D, SEM specification. The proposed method, performed at baseband to relax the strict constraints of the radio frequency (RF) front-end, allows 802.11p systems to be implemented using commercial off-the- shelf (COTS) 802.11a RF hardware, resulting in reduced total system cost

    GFM-Voc: A real-time voice quality modification system

    Get PDF
    International audienc
    • …
    corecore