48 research outputs found
Changes in catch rates and length and age at maturity, but not growth, of an estuarine plotosid (Cnidoglanis macrocephalus) after heavy fishing
The hypothesis that heavy fishing pressure has led to changes in the biological characteristics of the estuary cobbler (Cnidoglanis macrocephalus) was tested in a large seasonally open estuary in southwestern Australia, where this species completes its life cycle and is the most
valuable commercial fish species. Comparisons were made between seasonal data collected for this plotosid
(eeltail catfish) in Wilson Inlet during 2005–08 and those recorded with the same fishery-independent sampling regime during 1987–89. These comparisons show that the proportions of larger and older individuals and the catch rates in the
more recent period were far lower, i.e., they constituted reductions of 40% for fish ≥430 mm total length, 62% for fish ≥4 years of age, and 80% for catch rate. In addition, total mortality and fishing-induced mortality estimates increased by factors of ~2 and 2.5, respectively. The indications that the abundance and proportion of older C. macrocephalus declined between the two periods are consistent with the perception of long-term commercial fishermen and their shift toward using a smaller maximum gill net mesh to target this species. The sustained heavy fishing pressure on C. macrocephalus between 1987–89 and 2005–08 was accompanied by a marked reduction in length and age at maturity of this species. The shift in probabilistic maturation reaction norms toward smaller fish in 2005–08
and the lack of a conspicuous change in growth between the two periods indicate that the maturity changes were related to fishery-induced evolution rather than to compensatory
responses to reduced fish densities
Changing incidence and characteristics of non-tuberculous mycobacterial infections in Scotland and comparison with Mycobacterium tuberculosis complex incidence (2011 to 2019)
BACKGROUND: An increase in infections with nontuberculous mycobacteria (NTM) has been noted globally, and their incidence has overtaken that of Mycobacterium tuberculosis complex (MTBc) in many countries. Using data from a national reference laboratory, we aimed to determine if this trend could be observed in Scotland. METHODS: We undertook a retrospective review of all NTM isolates received by the Scottish Mycobacteria Reference Laboratory (SMRL) over 9 years from 2011 to 2019 inclusive. Clinical episodes were defined as per 2017 British Thoracic Society and 2020 American Thoracic Society/European Respiratory Society/European Society of Clinical Microbiology and Infectious Diseases/Infectious Diseases Society of America NTM guidelines. These rates were compared with Scottish tuberculosis rates over the same period. RESULTS: Of 8552 NTM isolates from 4586 patients in 2011 to 2019, 7739 (90.5%) were considered clinically relevant. These represented 2409 episodes of NTM infection, with M. avium, M. intracellulare, and M. abscessus complex being most common. A total of 1953 (81.1%) were pulmonary NTM infection episodes from 1470 patients and 456 extrapulmonary episodes from 370 patients. We estimated a rise in incidence from 3.4 to 6.5 per 100 000 person-years (2011–2019 inclusive), with an increase in NTM incidence over MTBc incidence in Scotland by 2017. CONCLUSIONS: The incidence of NTM infection in Scotland has overtaken MTBc incidence. NTM infection leads to a costly health care burden, possibly as much as UK£1.47 million (US$ and €1.73 million) annually. We recommend standardization of isolate referral with clinical surveillance and implementation of agreed standards of care delivered through multidisciplinary teams. This would improve diagnosis and patient management as well as assessment of diagnostics and novel treatments through clinical trials
Comprehensive Molecular Testing for Respiratory Pathogens in Community-Acquired Pneumonia.
BACKGROUND: The frequent lack of a microbiological diagnosis in community-acquired pneumonia (CAP) impairs pathogen-directed antimicrobial therapy. This study assessed the use of comprehensive multibacterial, multiviral molecular testing, including quantification, in adults hospitalized with CAP. METHODS: Clinical and laboratory data were collected for 323 adults with radiologically-confirmed CAP admitted to 2 UK tertiary care hospitals. Sputum (96%) or endotracheal aspirate (4%) specimens were cultured as per routine practice and also tested with fast multiplex real-time polymerase-chain reaction (PCR) assays for 26 respiratory bacteria and viruses. Bacterial loads were also calculated for 8 bacterial pathogens. Appropriate pathogen-directed therapy was retrospectively assessed using national guidelines adapted for local antimicrobial susceptibility patterns. RESULTS: Comprehensive molecular testing of single lower respiratory tract (LRT) specimens achieved pathogen detection in 87% of CAP patients compared with 39% with culture-based methods. Haemophilus influenzae and Streptococcus pneumoniae were the main agents detected, along with a wide variety of typical and atypical pathogens. Viruses were present in 30% of cases; 82% of these were codetections with bacteria. Most (85%) patients had received antimicrobials in the 72 hours before admission. Of these, 78% had a bacterial pathogen detected by PCR but only 32% were culture-positive (P < .0001). Molecular testing had the potential to enable de-escalation in number and/or spectrum of antimicrobials in 77% of patients. CONCLUSIONS: Comprehensive molecular testing significantly improves pathogen detection in CAP, particularly in antimicrobial-exposed patients, and requires only a single LRT specimen. It also has the potential to enable early de-escalation from broad-spectrum empirical antimicrobials to pathogen-directed therapy
Three Year Evaluation of Xpert MTB/RIF in a Low Prevalence Tuberculosis Setting
Objectives
Xpert MTB/RIF (Cepheid) is a rapid molecular assay shown to be sensitive and specific for pulmonary tuberculosis (TB) diagnosis in highly endemic countries. We evaluated its diagnostic performance in a low TB prevalence setting, examined rifampicin resistance detection and quantitative capabilities predicting graded auramine microscopy and time to positivity (TTP) of culture.
Methods
Xpert MTB/RIF was used to test respiratory samples over a 3 year period. Samples underwent graded auramine microscopy, solid/ liquid culture, in-house IS6110 real-time PCR, and GenoType MTBDRplus (HAIN Lifescience) to determine rifampicin and/or isoniazid resistance.
Results
A total of 2103 Xpert MTB/RIF tests were performed. Compared to culture sensitivity was 95.8%, specificity 99.5%, positive predictive value (PPV) 82.1%, and negative predictive value (NPV) 99.9%. A positive correlation was found between auramine microscopy grade and Xpert MTB/RIF assay load. We found a clear reduction in the median TTP as Xpert MTB/RIF assay load increased. Rifampicin resistance was detected.
Conclusions
Xpert MTB/RIF was rapid and accurate in diagnosing pulmonary TB in a low prevalence area. Rapid results will influence infection prevention and control and treatment measures. The excellent NPV obtained suggests further work should be carried out to assess its role in replacing microscopy
Three Year Evaluation of Xpert MTB/RIF in a Low Prevalence Tuberculosis Setting
Objectives
Xpert MTB/RIF (Cepheid) is a rapid molecular assay shown to be sensitive and specific for pulmonary tuberculosis (TB) diagnosis in highly endemic countries. We evaluated its diagnostic performance in a low TB prevalence setting, examined rifampicin resistance detection and quantitative capabilities predicting graded auramine microscopy and time to positivity (TTP) of culture.
Methods
Xpert MTB/RIF was used to test respiratory samples over a 3 year period. Samples underwent graded auramine microscopy, solid/ liquid culture, in-house IS6110 real-time PCR, and GenoType MTBDRplus (HAIN Lifescience) to determine rifampicin and/or isoniazid resistance.
Results
A total of 2103 Xpert MTB/RIF tests were performed. Compared to culture sensitivity was 95.8%, specificity 99.5%, positive predictive value (PPV) 82.1%, and negative predictive value (NPV) 99.9%. A positive correlation was found between auramine microscopy grade and Xpert MTB/RIF assay load. We found a clear reduction in the median TTP as Xpert MTB/RIF assay load increased. Rifampicin resistance was detected.
Conclusions
Xpert MTB/RIF was rapid and accurate in diagnosing pulmonary TB in a low prevalence area. Rapid results will influence infection prevention and control and treatment measures. The excellent NPV obtained suggests further work should be carried out to assess its role in replacing microscopy
A sub-group of patients with hospital-acquired pneumonia do not require broad-spectrum gram-negative antimicrobial coverage
C.D.R. is supported by an Edinburgh Clinical Academic Track (ECAT)/Wellcome Trust PhD Training Fellowship for Clinicians award (214178/Z/18/Z).Among 200 patients developing hospital-acquired pneumonia (HAP) outside the intensive care unit, 61% were treated empirically without broad-spectrum Gram-negative coverage, with clinical cure in 69.7%. Lower disease severity markers (systemic inflammatory response syndrome, hypoxia, tachypnoea, neutrophilia) and the absence of diabetes mellitus and prior doxycycline treatment (but not the time to HAP onset) identified patients not requiring broad-spectrum Gram-negative coverage.Publisher PDFPeer reviewe
Diagnostic importance of pulmonary interleukin-1beta and interleukin-8 in ventilator-associated pneumonia.
BACKGROUND: Ventilator-associated pneumonia (VAP) is the most commonly fatal nosocomial infection. Clinical diagnosis of VAP remains notoriously inaccurate. The hypothesis was tested that significantly augmented inflammatory markers distinguish VAP from conditions closely mimicking VAP. METHODS: A prospective, observational cohort study was carried out in two university hospital intensive care units recruiting 73 patients with clinically suspected VAP, and a semi-urban primary care practice recruiting a reference group of 21 age- and sex-matched volunteers. Growth of pathogens at >10(4) colony-forming units (cfu)/ml of bronchoalveolar lavage fluid (BALF) distinguished VAP from "non-VAP". Inflammatory mediators were quantified in BALF and serum. Mediators showing significant differences between patients with and without VAP were analysed for diagnostic utility by receiver operator characteristic (ROC) curves. RESULTS: Seventy-two patients had recoverable lavage-24% had VAP. BALF interleukin-1beta (IL-1beta), IL-8, granulocyte colony-stimulating factor and macrophage inflammatory protein-1alpha were significantly higher in the VAP group (all p<0.005). Using a cut-off of 10 pg/ml, BALF IL-1beta generated negative likelihood ratios for VAP of 0.09. In patients with BALF IL-1beta <10 pg/ml the post-test probability of VAP was 2.8%. Using a cut-off value for IL-8 of 2 ng/ml, the positive likelihood ratio was 5.03. There was no difference in cytokine levels between patients with sterile BALF and those with growth of <10(4) cfu/ml. CONCLUSIONS: BALF IL-1beta and IL-8 are amongst the strongest markers yet identified for accurately demarcating VAP within the larger population of patients with suspected VAP. These findings have potential implications for reduction in unnecessary antibiotic use but require further validation in larger populations