223 research outputs found

    Black Carbon Concentrations in Snow at Tronsen Meadow in Central Washington from 2012 to 2013: Temporal and Spatial Variations and the Role of Local Forest Fire Activity

    Get PDF
    Characterizing black carbon (BC) concentrations in the seasonal snowpack is of interest because BC deposition on snow can reduce albedo and accelerate melt. In Washington State, USA snowmelt from the seasonal snowpack provides an important source of water resources, but minimal work has been done characterizing BC concentrations in snow in this region. BC concentrations in snow were monitored over two winters (2012 and 2013) at Tronsen Meadow, located near Blewett Pass in the eastern Cascade Mountains in Central Washington, to characterize spatial and temporal variations in BC concentrations, and the processes affecting BC concentrations in the snowpack. BC concentrations were measured using a Single Particle Soot Photometer. Snowpit BC concentrations at spatial scales ranging from centimeter to 100m scales were fairly homogenous during the accumulation season, with greater spatial variability during the melt season due to variable melt patterns. BC concentrations in snow increased in late winter-spring due to an increase in atmospheric BC concentrations and trapping of BC on the snow surface during melt. However, during a period of intense melt in 2013 BC concentrations decreased, likely caused by meltwater scavenging. In summer 2012 the Table Mountain forest fire burned adjacent to the study site, and BC concentrations in the snowpack in 2013 were far higher than in previous years, with charred trees postfire the likely source of the elevated BC

    Executive Protection Manual

    Get PDF

    Correlation of infused CD3+CD8+ cells with single-donor dominance after double-unit cord blood transplantation.

    Get PDF
    Single-donor dominance is observed in the majority of patients following double-unit cord blood transplantation (dCBT); however, the biological basis for this outcome is poorly understood. To investigate the possible influence of specific cell lineages on dominance in dCBT, flow cytometry assessment for CD34(+), CD14(+), CD20(+), CD3(-)CD56(+), CD3(+)CD56(+) (natural killer), and T cell subsets (CD4(+), CD8(+), memory, naĂŻve, and regulatory) was performed on individual units. Subsets were calculated as infused viable cells per kilogram of recipient actual weight. Sixty patients who underwent dCBT were included in the final analysis. Higher CD3(+) cell dose was statistically concordant with the dominant unit in 72% of cases (P = .0006). Further T cell subset analyses showed that dominance was correlated more with the naive CD8(+) cell subset (71% concordance; P = .009) than with the naive CD4(+) cell subset (61% concordance; P = .19). These data indicate that a greater total CD3(+) cell dose, particularly of naĂŻve CD3(+)CD8(+) T cells, may play an important role in determining single-donor dominance after dCBT

    Accelerated Glacier Melt on Snow Dome, Mount Olympus, Washington, USA, due to Deposition of Black Carbon and Mineral Dust from Wildfire

    Get PDF
    Assessing the potential for black carbon (BC) and dust deposition to reduce albedo and accelerate glacier melt is of interest in Washington because snow and glacier melt are an important source of water resources, and glaciers are retreating. In August 2012 on Snow Dome, Mount Olympus, Washington, we measured snow surface spectral albedo and collected surface snow samples and a 7 m ice core. The snow and ice samples were analyzed for iron (Fe, used as a dust proxy) via inductively coupled plasma sector field mass spectrometry, total impurity content gravimetrically, BC using a single-particle soot photometer (SP2), and charcoal through microscopy. In the 2012 summer surface snow, BC (54 ± 50 μg/L), Fe (367±236 μg/L) and gravimetric impurity (35 ± 18 mg/L) concentrations were spatially variable, and measured broadband albedo varied between 0.67–0.74. BC and dust concentrations in the ice core 2011 summer horizon were a magnitude higher (BC = 3120 μg/L, Fe = 22000 μg/L, and gravimetric impurity = 1870 mg/L), corresponding to a modeled broadband albedo of 0.45 based on the measured BC and ravimetric impurity concentrations. The Big Hump forest fire is the likely source for the higher concentrations. Modeling constrained by measurements indicates that the all-sky 12 h daily mean radiative forcings in summer 2012 and 2011 range between 37–53Wm_2 and 112–149Wm_2, respectively, with the greater forcings in 2011 corresponding to a 29–38mm/d enhancement in snowmelt. The timing of the forest fire impurity deposition is coincident with an increase in observed discharge in the Hoh River, highlighting the potential for BC and dust deposition on glaciers from forest fires to accelerate melt

    Phases of hadron-quark matter in (Proto) neutron stars

    Get PDF
    In the first part of this paper, we investigate the possible existence of a structured hadron-quark mixed phase in the cores of neutron stars. This phase, referred to as the hadron-quark pasta phase, consists of spherical blob, rod, and slab rare phase geometries. Particular emphasis is given to modeling the size of this phase in rotating neutron stars. We use the relativistic mean-field theory to model hadronic matter and the non-local three-flavor Nambu–Jona-Lasinio model to describe quark matter. Based on these models, the hadron-quark pasta phase exists only in very massive neutron stars, whose rotational frequencies are less than around 300 Hz. All other stars are not dense enough to trigger quark deconfinement in their cores. Part two of the paper deals with the quark-hadron composition of hot (proto) neutron star matter. To this end we use a local three-flavor Polyakov–Nambu–Jona-Lasinio model which includes the’t Hooft (quark flavor mixing) term. It is found that this term leads to non-negligible changes in the particle composition of (proto) neutron stars made of hadron-quark matter.Fil: Weber, Fridolin. San Diego State University; Estados Unidos. University of California at San Diego; Estados UnidosFil: Farrell, Delaney. San Diego State University; Estados UnidosFil: Spinella, William M.. Wentworth Institute of Technology; Estados UnidosFil: Malfatti, Germán. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Orsaria, Milva Gabriela. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Contrera, Gustavo Aníbal Gabriel. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Maloney, Ian. San Diego State University; Estados Unido

    Fast Pulsars, Neutron Stars, and Astrophysical Strange Quark Matter Objects

    Full text link
    This book chapter explores key aspects of neutron stars, pulsar glitches, tidal deformability, fast pulsars, the equation of state, and strange quark matter stars. Challenges in directly measuring neutron star radius have led to reliance on spectroscopic and timing techniques, with uncertainties addressed through careful source selection and theoretical modeling. Pulsar glitches reveal insights into the equation of state through angular momentum transfer within the neutron star. Tidal deformability is crucial in gravitational-wave astronomy, exemplified by the GW170817 event. Fast pulsars, instrumental in astrophysical testing, are classified into ordinary pulsars, millisecond pulsars, and magnetars. The EOS is vital for understanding neutron star internal structure, explored through various models. The chapter delves into the theoretical framework for rotating neutron stars, addressing uniform and differential rotation scenarios and their impacts on mass and radius. Additionally, the intriguing concept of quark stars and strange dwarfs is investigated. The various topics discussed in this book chapter contribute to a broader understanding of dense matter physics, astrophysical phenomena, and the potential for transformative discoveries through advanced observational techniques and technologies like gravitational wave detectors, radio telescopes, and X-ray telescopes.Comment: 45 pages, 16 figure

    Department of Music Student Symposium Recital

    Get PDF
    The 2015 Annual Student Symposium Recital features students from the Department of Music nominated by the music faculty to recognize excellence in scholarship and creative achievement. The performance includes selections from senior capstones in music (senior recitals, projects, lecture-recitals, theses), original music compositions, music performed for competitions, original dance choreography, and faculty-student collaborative chamber music works
    • …
    corecore