1,291 research outputs found

    Physical Properties of the US ITASE Firn and Ice Cores from South Pole to Taylor Dome

    Get PDF
    This award supports a project for physical properties research on snow pits and firn/ice cores with specific objectives that include stratigraphic analysis including determination of accumulation rates, annual layers, depth hoar, ice and wind crusts and rates of grain growth with depth. Studies of firn densification rates and how these parameters relate to the meteorology and climatology over the last 200 years of snow accumulation in Antarctica will also be investigated. The project will also determine the seasonality of accumulation by co-registration of stratigraphy and chemistry and determination of chemical species at the grain boundaries, how these may change with depth/densification (and therefore temperature), precipitation, and may affect grain growth. Fabric analyses will be made, including variation with depth, location on undulations and if any variation exists with climate/chemistry. The large spatial coverage of the US ITASE program offers the opportunity to determine how these parameters are affected by a large range of temperature, precipitation and topographic effects. The intellectual merit of the project includes the fact that ITASE is the terrestrial equivalent of a polar research vessel that provides a unique, logistically efficient, multi-dimensional (x, y, z and time) view of the atmosphere, ice sheet and their histories. Physical properties measurements/ analyses are an integral part of understanding the dynamic processes to which the accumulated snow is subjected. Recent advancements in the field along with multiple core sites provide an excellent opportunity to gain a much broader understanding of the spatial, temporal and physical variables that impact firnification and the possible resultant impact on climatic interpretation. In terms of broader impacts, the data collected by US ITASE and its international ITASE partners is available to a broad scientific community. US ITASE has an extensive program of public outreach and provides significant opportunities for many students to experience multidisciplinary Antarctic research. A graduate student, a post-doctoral fellow and at least one undergraduate would be funded by this work. Dr. Meese is also a member of the New England Science Collaborative, an organization that educates the public on climate change based on recent scientific advancements

    Do cardiovascular responses to active and passive coping tasks predict future blood pressure 10 months later?

    Get PDF
    The study examined whether cardiovascular responses to active or passive coping tasks and single or multiple tasks predicted changes in resting blood pressure (BP) over a ten-month period. Heart rate (HR), BP, cardiac output (CO), and total peripheral resistance (TPR) were measured at rest, and during mental stress tests (mental arithmetic, speech, and cold pressor tasks). A total of 104 eligible participants participated in the initial study, and 77 (74.04%) normotensive adult participants’ resting BP were re-evaluated at ten-month follow-up. Regression analyses indicated that after adjustment for baseline BP, initial age, gender, body mass index, family history of cardiovascular disease, and current cigarette smoking, heightened systolic blood pressure (SBP) and HR responses to an active coping task (mental arithmetic) were associated with increased future SBP (R2 = .060, R2 =.045, respectively). Further, when aggregated, SBP responsivity (over the three tasks) resulted in a significant, but smaller increase in R2 accounting for .040 of the variance of follow-up SBP. These findings suggest that cardiovascular responses to active coping tasks predict future SBP. Furtherthe findings revealed that SBP responses to the tasks when aggregated were less predictive compared to an individual task (i.e., mental arithmetic). Of importance, hemodynamic reactivity (namely CO and TPR) did not predict future BP; suggesting that more general psychophysiological processes (e.g., inflammation, platelet aggregation) may be implicated, or that BP, but not hemodynamic reactivity may be a marker of hypertension

    A new subtype of frontotemporal lobar degeneration with FUS pathology

    Get PDF
    Frontotemporal dementia (FTD) is a clinical syndrome with a heterogeneous molecular basis. The neuropathology associated with most FTD is characterized by abnormal cellular aggregates of either transactive response DNA-binding protein with Mr 43 kDa (TDP-43) or tau protein. However, we recently described a subgroup of FTD patients, representing around 10%, with an unusual clinical phenotype and pathology characterized by frontotemporal lobar degeneration with neuronal inclusions composed of an unidentified ubiquitinated protein (atypical FTLD-U; aFTLD-U). All cases were sporadic and had early-onset FTD with severe progressive behavioural and personality changes in the absence of aphasia or significant motor features. Mutations in the fused in sarcoma (FUS) gene have recently been identified as a cause of familial amyotrophic lateral sclerosis, with these cases reported to have abnormal cellular accumulations of FUS protein. Because of the recognized clinical, genetic and pathological overlap between FTD and amyotrophic lateral sclerosis, we investigated whether FUS might also be the pathological protein in aFTLD-U. In all our aFTLD-U cases (n = 15), FUS immunohistochemistry labelled all the neuronal inclusions and also demonstrated previously unrecognized glial pathology. Immunoblot analysis of protein extracted from post-mortem aFTLD-U brain tissue demonstrated increased levels of insoluble FUS. No mutations in the FUS gene were identified in any of our patients. These findings suggest that FUS is the pathological protein in a significant subgroup of sporadic FTD and reinforce the concept that FTD and amyotrophic lateral sclerosis are closely related condition

    Long Days Enhance Recognition Memory and Increase Insulin-like Growth Factor 2 in the Hippocampus

    Get PDF
    Light improves cognitive function in humans; however, the neurobiological mechanisms underlying positive effects of light remain unclear. One obstacle is that most rodent models have employed lighting conditions that cause cognitive deficits rather than improvements. Here we have developed a mouse model where light improves cognitive function, which provides insight into mechanisms underlying positive effects of light. To increase light exposure without eliminating daily rhythms, we exposed mice to either a standard photoperiod or a long day photoperiod. Long days enhanced long-term recognition memory, and this effect was abolished by loss of the photopigment melanopsin. Further, long days markedly altered hippocampal clock function and elevated transcription of Insulin-like Growth Factor2 (Igf2). Up-regulation of Igf2 occurred in tandem with suppression of its transcriptional repressor Wilm’s tumor1. Consistent with molecular de-repression of Igf2, IGF2 expression was increased in the hippocampus before and after memory training. Lastly, long days occluded IGF2-induced improvements in recognition memory. Collectively, these results suggest that light changes hippocampal clock function to alter memory, highlighting novel mechanisms that may contribute to the positive effects of light. Furthermore, this study provides insight into how the circadian clock can regulate hippocampus-dependent learning by controlling molecular processes required for memory consolidation

    Interannual variability of photosynthesis across Africa and its attribution

    Get PDF
    Africa is thought to be a large source of interannual variability in the global carbon cycle, only vaguely attributed to climate fluctuations. This study uses a biophysical model, Simple Biosphere, to examine in detail what specific factors, physiological (acute stress from low soil water, temperature, or low humidity) and biophysical (low vegetation radiation use), are responsible for spatiotemporal patterns of photosynthesis across the African continent during the period 1982-2003. Acute soil water stress emerges as the primary factor driving interannual variability of photosynthesis for most of Africa. Southern savannas and woodlands are a particular hot spot of interannual variability in photosynthesis, owing to high rainfall variability and photosynthetic potential but intermediate annual rainfall. Surprisingly low interannual variability of photosynthesis in much of the Sudano-Sahelian zone derives from relatively low vegetation cover, pronounced humidity stress, and somewhat lower rainfall variability, whereas perennially wet conditions diminish interannual variability in photosynthesis across much of the Congo Basin and coastal West Africa. Though not of focus here, the coefficient of variation in photosynthesis is notably high in drylands and desert margins (i.e., Sahel, Greater Horn, Namib, and Kalahari) having implications for supply of food and fiber. These findings emphasize that when considering impacts of climate change and land surface feedbacks to the atmosphere, it is important to recognize how vegetation, climate, and soil characteristics may conspire to filter or dampen ecosystem responses to hydroclimatic variability. Copyright 2008 by the American Geophysical Union

    The Situation Analysis Approach to Assessing Family Planning and Reproductive Health Services: A Handbook

    Get PDF
    Good family planning service delivery emphasizing both access and quality is key to the related goals of satisfying individual needs and achieving programmatic success. Situation Analysis (SA) provides a needed link between the manager and the client he or she is trying to serve. The data marshaled for SA offer a representative picture of how subsystems are working and provide a way to “see” the client’s experience. Situation Analyses assist managers in achieving the broadest management goal—that of efficient administration of a vital health care service while keeping in view the ultimate goal—providing good care for those who seek it. “The Situation Analysis Approach to Assessing Family Planning and Reproductive Health Services” handbook is a tool to help implement SA studies. Some of the sections are more valuable for policymakers and program planners, others for researchers, and still others for field interviewers. The handbook consists of four chapters: The Situation Analysis Study Methodology; Conducting the Study; Instruments and Question-by-Question Guides; and Data Analysis and Reporting

    Shell Neurons of the Master Circadian Clock Coordinate the Phase of Tissue Clocks Throughout the Brain and Body

    Get PDF
    Background: Daily rhythms in mammals are programmed by a master clock in the suprachiasmatic nucleus (SCN). The SCN contains two main compartments (shell and core), but the role of each region in system-level coordination remains ill defined. Herein, we use a functional assay to investigate how downstream tissues interpret region-specific outputs by using in vivo exposure to long day photoperiods to temporally dissociate the SCN. We then analyze resulting changes in the rhythms of clocks located throughout the brain and body to examine whether they maintain phase synchrony with the SCN shell or core. Results: Nearly all of the 17 tissues examined in the brain and body maintain phase synchrony with the SCN shell, but not the SCN core, which indicates that downstream oscillators are set by cues controlled specifically by the SCN shell. Interestingly, we also found that SCN dissociation diminished the amplitude of rhythms in core clock gene and protein expression in brain tissues by 50–75 %, which suggests that light-driven changes in the functional organization of the SCN markedly influence the strength of rhythms in downstream tissues. Conclusions: Overall, our results reveal that body clocks receive time-of-day cues specifically from the SCN shell, which may be an adaptive design principle that serves to maintain system-level phase relationships in a changing environment. Further, we demonstrate that lighting conditions alter the amplitude of the molecular clock in downstream tissues, which uncovers a new form of plasticity that may contribute to seasonal changes in physiology and behavior
    • …
    corecore