34 research outputs found

    Differentiating between V‐ and G‐series nerve agent and simulant vapours using fluorescent film responses

    Get PDF
    In-field rapid and reliable identification of nerve agents is critical for the protection of Defence and National Security personnel as well as communities. Fluorescence-based detectors can be portable and provide rapid detection of chemical threats. However, most current approaches cannot differentiate between dilute vapors of nerve agent classes and are susceptible to false positives due to the presence of common acids. Here a fluorescence-based method is shown for rapid differentiation between the V-series and phosphonofluoridate G-series nerve agents and avoids false positives due to common acids. Differentiation is achieved through harnessing two different mechanisms. Detection of the V-series is achieved using photoinduced hole transfer whereby the fluorescence of the sensing material is quenched in the presence of the V-series agent. The G-series is detected using a turn-on mechanism in which a silylated excited state intramolecular proton transfer sensing molecule is selectively deprotected by hydrogen fluoride, which is typically found as a contaminant and/or breakdown product in G-series agents such as sarin. The strategy provided discrimination between classes, as the sensor for the G-series agent class is insensitive to the V-series agent, and vice versa, and neither responded to common acids

    Conserved motifs reveal details of ancestry and structure in the small tim chaperones of the mitochondrial intermembrane space

    Get PDF
    The mitochondrial inner and outer membranes are composed of a variety of integral membrane proteins, assembled into the membranes posttranslationally. The small translocase of the inner mitochondrial membranes (TIMs) are a group of ∌10 kDa proteins that function as chaperones to ferry the imported proteins across the mitochondrial intermembrane space to the outer and inner membranes. In yeast, there are 5 small TIM proteins: Tim8, Tim9, Tim10, Tim12, and Tim13, with equivalent proteins reported in humans. Using hidden Markov models, we find that many eukaryotes have proteins equivalent to the Tim8 and Tim13 and the Tim9 and Tim10 subunits. Some eukaryotes provide "snapshots" of evolution, with a single protein showing the features of both Tim8 and Tim13, suggesting that a single progenitor gene has given rise to each of the small TIMs through duplication and modification. We show that no "Tim12" family of proteins exist, but rather that variant forms of the cognate small TIMs have been recently duplicated and modified to provide new functions: the yeast Tim12 is a modified form of Tim10, whereas in humans and some protists variant forms of Tim9, Tim8, and Tim13 are found instead. Sequence motif analysis reveals acidic residues conserved in the Tim10 substrate-binding tentacles, whereas more hydrophobic residues are found in the equivalent substrate-binding region of Tim13. The substrate-binding region of Tim10 and Tim13 represent structurally independent domains: when the acidic domain from Tim10 is attached to Tim13, the Tim8–Tim13Âč⁰ complex becomes essential and the Tim9–Tim10 complex becomes dispensable. The conserved features in the Tim10 and Tim13 subunits provide distinct binding surfaces to accommodate the broad range of substrate proteins delivered to the mitochondrial inner and outer membranes

    Elucidating the spatial arrangement of emitter molecules in organic light-emitting diode films

    Get PDF
    The effect of varying the emitter concentration on the structural properties of an archetypal phosphorescent blend consisting of 4,4â€Č-bis(N-carbazolyl)biphenyl and tris(2-phenylpyridyl)iridium(III) has been investigated using non-equilibrium molecular dynamics (MD) simulations that mimic the process of vacuum deposition. By comparison with reflectometry measurements, we show that the simulations provide an accurate model of the average density of such films. The emitter molecules were found not to be evenly distributed throughout film, but rather they can form networks that provide charge and/or energy migration pathways, even at emitter concentrations as low as ≈5 weight percent. At slightly higher concentrations, percolated networks form that span the entire system. While such networks would give improved charge transport, they could also lead to more non-radiative pathways for the emissive state and a resultant loss of efficiency

    TAK1 Is Required for Survival of Mouse Fibroblasts Treated with TRAIL, and Does So by NF-ÎșB Dependent Induction of cFLIPL

    Get PDF
    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is known as a “death ligand”—a member of the TNF superfamily that binds to receptors bearing death domains. As well as causing apoptosis of certain types of tumor cells, TRAIL can activate both NF-ÎșB and JNK signalling pathways. To determine the role of TGF-ÎČ-Activated Kinase-1 (TAK1) in TRAIL signalling, we analyzed the effects of adding TRAIL to mouse embryonic fibroblasts (MEFs) derived from TAK1 conditional knockout mice. TAK1−/− MEFs were significantly more sensitive to killing by TRAIL than wild-type MEFs, and failed to activate NF-ÎșB or JNK. Overexpression of IKK2-EE, a constitutive activator of NF-ÎșB, protected TAK1−/− MEFs against TRAIL killing, suggesting that TAK1 activation of NF-ÎșB is critical for the viability of cells treated with TRAIL. Consistent with this model, TRAIL failed to induce the survival genes cIAP2 and cFlipL in the absence of TAK1, whereas activation of NF-ÎșB by IKK2-EE restored the levels of both proteins. Moreover, ectopic expression of cFlipL, but not cIAP2, in TAK1−/− MEFs strongly inhibited TRAIL-induced cell death. These results indicate that cells that survive TRAIL treatment may do so by activation of a TAK1–NF-ÎșB pathway that drives expression of cFlipL, and suggest that TAK1 may be a good target for overcoming TRAIL resistance

    Inhibitor of apoptosis proteins are required for effective fusion of autophagosomes with lysosomes

    Full text link
    Inhibitor of Apoptosis Proteins act as E3 ubiquitin ligases to regulate NF-ÎșB signalling from multiple pattern recognition receptors including NOD2, as well as TNF Receptor Superfamily members. Loss of XIAP in humans causes X-linked Lymphoproliferative disease type 2 (XLP-2) and is often associated with Crohn’s disease. Crohn’s disease is also caused by mutations in the gene encoding NOD2 but the mechanisms behind Crohn’s disease development in XIAP and NOD2 deficient-patients are still unknown. Numerous other mutations causing Crohn’s Disease occur in genes controlling various aspects of autophagy, suggesting a strong involvement of autophagy in preventing Crohn’s disease. Here we show that the IAP proteins cIAP2 and XIAP are required for efficient fusion of lysosomes with autophagosomes. IAP inhibition or loss of both cIAP2 and XIAP resulted in a strong blockage in autophagic flux and mitophagy, suggesting that XIAP deficiency may also drive Crohn’s Disease due to defects in autophagy

    The binding and fluorescence quenching efficiency of nitroaromatic (explosive) vapors in fluorescent carbazole dendrimer thin films

    No full text
    We present a study on three generations of fluorescent carbazole dendrimers that exhibit strong binding with nitroaromatic compounds accompanied by photoluminescence (PL) quenching, making them attractive sensing materials for the detection of explosives such as 2,4,6-trinitrotoluene (TNT). The absorption and release of vapors of the (deuterated) TNT analogue 4-nitrotoluene (pNT) from thin films of the dendrimers were studied with a combination of time-correlated neutron reflectometry and PL spectroscopy. When saturated with pNT the PL of the films was fully quenched and could not be recovered with flowing nitrogen at room temperature but only upon heating to 40-80 degrees C. Although the majority of the absorbed pNT could be removed with this method the recovered films were found to still contain a residual pNT concentration of similar to 0.1 molecules per cubic nanometer. However, the proportion of the PL recovered increased with generation with the third generation dendrimer exhibiting close to full recovery despite the presence of residual pNT. This result is attributed to a combination of two effects. First, the dendrimer films present a range of binding sites for nitroaromatic molecules with the stronger binding sites surviving the thermal recovery process. Second, there is a large decrease of the exciton diffusion coefficient with dendrimer generation, preventing migration of the excitation to the remaining bound pNT

    Detection of explosive vapors: the roles of exciton and molecular diffusion in real-time sensing

    No full text
    Time-resolved quartz crystal microbalance with in situ fluorescence measurements are used to monitor the sorption of the nitroaromatic (explosive) vapor, 2,4-dinitrotoluene (DNT) into a porous pentiptycene-containing poly(phenyleneethynylene) sensing film. Correlation of the nitroaromatic mass uptake with fluorescence quenching shows that the analyte diffusion follows the Case-II transport model, a film-swelling-limited process, in which a sharp diffusional front propagates at a constant velocity through the film. At a low vapor pressure of DNT of approximate to 16 ppb, the analyte concentration in the front is sufficiently high to give an average fluorophore-analyte separation of approximate to 1.5 nm. Hence, a long exciton diffusion length is not required for real-time sensing in the solid state. Rather the diffusion behavior of the analyte and the strength of the binding interaction between the analyte and the polymer play first-order roles in the fluorescence quenching process

    Efficient Inverted Perovskite Solar Cells Using Dual Fluorinated Additive Modification

    No full text
    Abstract Materials engineering is key to improving the stability and photovoltaic parameters of inverted perovskite solar cells (PSCs). This work presents the effect of two different fluorinated additives on the performance of PSCs containing the archetypal three‐dimensional perovskite, methylammonium lead triiodide (MAPbI3). 3‐(2,3,4,5,6‐Pentafluorophenyl)propylammonium iodide (FPAI) is added to the anode modifying layer and (2,3,4,5,6‐pentafluorophenyl)methylammonium bromide (FMABr) is blended into the perovskite layer. The inverted devices containing FPAI in the anode modifying layer and 0.32 mol% of FMABr from the perovskite precursor solution had hysteresis‐free current density‐voltage characteristics and a maximum power conversion efficiency of 22.3%, which is an absolute increase of 1.7% compared to the MAPbI3 device (20.6%) of the same architecture but without the additives

    Diffusion at interfaces in OLEDs containing a doped phosphorescent emissive layer

    No full text
    A common feature of organic light-emitting diodes is their stacked multilayer structure, which is critical for efficient charge injection and transport, and light emission. In this study, it is found that a blended layer of the hole-transport material tris(4-carbazol-9-ylphenyl)amine with 6 wt% fac-tris(2-phenylpyridyl)iridium(III) [Ir(ppy)(3)] readily undergoes interdiffusion with adjacent layers of typical charge transport materials: bathocuproine; 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene; N,N-bis(3-methylphenyl)-N,N-diphenylbenzidine; and N,N-bis(naphthalen-1-yl)-N,N-diphenylbenzidine. This process is followed using combined neutron reflectometry and in situ photoluminescence measurements. The temperature at which diffusion occurred is found to correlate with the glass transition temperature of the materials. Importantly, the layer of the material with the lowest T-g is the material that acts as a diffusive host for the adjacent layer, which has a higher T-g. That is, a high T-g material does not necessarily act as a blocking layer for diffusion. Furthermore, the results show that the order of structural change within a film can be predicted on the basis of the thermal properties of the materials. These results confirm the necessity of using materials with high glass transition temperatures throughout the device to minimize performance degradation by layer interdiffusion
    corecore