14 research outputs found

    Π’ΠΎΡ‡Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ Π½Π° ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° динамичСской ТСсткости

    Get PDF
    Бтаття присвячСна ΠΎΠ±Π³ΠΎΠ²ΠΎΡ€Π΅Π½Π½ΡŽ застосування Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΎΡ— ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ– Торсткості Π΄ΠΎ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ ΠΏΡ€ΡƒΠΆΠ½ΠΎΡ— стійкості Ρ–Π½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΈΡ… конструкцій. Π’ статті Π½Π°Π²Π΅Π΄Π΅Π½ΠΎ Π²ΠΈΠ²Ρ–Π΄ Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΎΡ— ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ– Торсткості для структурних Π±Π°Π»ΠΎΡ‡Π½ΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ–Π² Π· наступним ΠΊΠ΅Ρ€Ρ–Π²Π½ΠΈΡ†Ρ‚Π²ΠΎΠΌ Ρ‰ΠΎΠ΄ΠΎ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†Ρ–Ρ— Π·Π±ΠΎΡ€ΠΊΠΈ Π³Π»ΠΎΠ±Π°Π»ΡŒΠ½ΠΎΡ— Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΎΡ— ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ– Торсткості для всієї конструкції Π· ΠΌΠ°Ρ‚Ρ€ΠΈΡ†ΡŒ для ΠΊΠΎΠΆΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°. Π’Π°ΠΊΠΎΠΆ ΠΎΠ±Π³ΠΎΠ²ΠΎΡ€ΡŽΡŽΡ‚ΡŒΡΡ ΠΏΠ΅Ρ€Π΅Π²Π°Π³ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΎΡ— ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ– Торсткості Ρƒ Π²ΠΈΠΏΠ°Π΄ΠΊΡƒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΡ–Π². ΠŸΡ€ΠΎΠ°Π½Π°Π»Ρ–Π·ΠΎΠ²Π°Π½Π° ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΡƒ власних Π·Π½Π°Ρ‡Π΅Π½ΡŒ трансцСндСнтної ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ– Торсткості. Π’ дСталях Π°Π½Π°Π»Ρ–Π·ΡƒΡ”Ρ‚ΡŒΡΡ як ΠΌΠ΅Ρ‚ΠΎΠ΄ прямого Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΡƒ власних Π·Π½Π°Ρ‡Π΅Π½ΡŒ, Ρ‚Π°ΠΊ Ρ– ΠΏΠΎΡ‚ΡƒΠΆΠ½ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π’Ρ–Ρ‚Ρ‚Ρ€Ρ–ΠΊΠ°-Π’Ρ–Π»ΡŒΡΠΌΡΠ°. Π’ статті Ρ‚Π°ΠΊΠΎΠΆ Π½Π°Π²ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ загальна інструкція Π΄ΠΎ програмування ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΎΡ— ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ– Торсткості.The article is dedicated to the discussion on the exact dynamic stiffness matrix method applied to the problems of elastic stability of engineering structures. The detailed formulation of the member dynamic stiffness matrix for beams is presented along with the general guidelines on automatisation of the assembly of member dynamic stiffness matrices into the global matrix that corresponds to the whole structure. The advantage of the dynamic stiffness matrix in case of parametric studies is explained. The problem of computing the eigenvalues of transcendental matrix is addressed. The straightforward approach as well as a powerful WitrickWilliams algorithm are discussed in details. The general guidelines on programming the DS matrix method are given as well.Π‘Ρ‚Π°Ρ‚ΡŒΡ посвящСна ΠΎΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΡŽ примСнСния Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° динамичСской ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ТСсткости ΠΊ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°ΠΌ ΡƒΠΏΡ€ΡƒΠ³ΠΎΠΉ устойчивости ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½Ρ‹Ρ… конструкций. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСн Π²Ρ‹Π²ΠΎΠ΄ динамичСской ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ТСсткости для структурных Π±Π°Π»ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ руководством ΠΊ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ сборки глобальной динамичСской ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ТСсткости для всСй конструкции ΠΈΠ· ΠΌΠ°Ρ‚Ρ€ΠΈΡ† для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°. Π’Π°ΠΊΠΆΠ΅ ΠΎΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ прСимущСства ΠΌΠ΅Ρ‚ΠΎΠ΄Π° динамичСской ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ТСсткости Π² случаС парамСтричСских расчСтов. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π° ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° расчСта собствСнных Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ трансцСндСнтной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ТСсткости. Π’ дСталях Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΠΊΠ°ΠΊ ΠΌΠ΅Ρ‚ΠΎΠ΄ прямого расчСта собствСнных Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ, Ρ‚Π°ΠΊ ΠΈ ΠΌΠΎΡ‰Π½Ρ‹ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Π’ΠΈΡ‚Ρ‚Ρ€ΠΈΠΊΠ°-Π’ΠΈΠ»ΡŒΡΠΌΡΠ°. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ‚Π°ΠΊΠΆΠ΅ приводится ΠΎΠ±Ρ‰Π΅Π΅ руководство ΠΊ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° динамичСской ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ТСсткости

    Π’ΠžΠ§ΠΠ«Π™ ΠœΠ•Π’ΠžΠ” Π Π•Π¨Π•ΠΠ˜Π― ЗАДАЧ НА Π£Π‘Π’ΠžΠ™Π§Π˜Π’ΠžΠ‘Π’Π¬ Π‘ ΠŸΠ Π˜ΠœΠ•ΠΠ•ΠΠ˜Π•Πœ ΠœΠ•Π’ΠžΠ”Π Π”Π˜ΠΠΠœΠ˜Π§Π•Π‘ΠšΠžΠ™ Π–Π•Π‘Π’ΠšΠžΠ‘Π’Π˜

    No full text
    The article is dedicated to the discussion on the exact dynamic stiffness matrix method applied to the problems of elastic stability of engineering structures. The detailed formulation of the member dynamic stiffness matrix for beams is presented along with the general guidelines on automatisation of the assembly of member dynamic stiffness matrices into the global matrix that corresponds to the whole structure. The advantage of the dynamic stiffness matrix in case of parametric studies is explained. The problem of computing the eigenvalues of transcendental matrix is addressed. The straightforward approach as well as a powerful Witrick-Williams algorithm are discussed in details. The general guidelines on programming the DS matrix method are given as well.Π‘Ρ‚Π°Ρ‚ΡŒΡ посвящСна ΠΎΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΡŽ примСнСния Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° динамичСской ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ТСсткости ΠΊ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°ΠΌ ΡƒΠΏΡ€ΡƒΠ³ΠΎΠΉ устойчивости ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½Ρ‹Ρ… конструкций. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСн Π²Ρ‹Π²ΠΎΠ΄ динамичСской ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ТСсткости для структурных Π±Π°Π»ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ руководством ΠΊ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ сборки глобальной динамичСской ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ТСсткости для всСй конструкции ΠΈΠ· ΠΌΠ°Ρ‚Ρ€ΠΈΡ† для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°. Π’Π°ΠΊΠΆΠ΅ ΠΎΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ прСимущСства ΠΌΠ΅Ρ‚ΠΎΠ΄Π° динамичСской ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ТСсткости Π² случаС парамСтричСских расчСтов. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π° ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° расчСта собствСнных Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ трансцСндСнтной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ТСсткости. Π’ дСталях Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΠΊΠ°ΠΊ ΠΌΠ΅Ρ‚ΠΎΠ΄ прямого расчСта собствСнных Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ, Ρ‚Π°ΠΊ ΠΈ ΠΌΠΎΡ‰Π½Ρ‹ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Π’ΠΈΡ‚Ρ‚Ρ€ΠΈΠΊΠ°-Π’ΠΈΠ»ΡŒΡΠΌΡΠ°. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ‚Π°ΠΊΠΆΠ΅ приводится ΠΎΠ±Ρ‰Π΅Π΅ руководство ΠΊ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° динамичСской ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ТСсткости.Π‘Ρ‚Π°Ρ‚ΡŒΡ посвящСна ΠΎΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΡŽ примСнСния Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° динамичСской ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ТСсткости ΠΊ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°ΠΌ ΡƒΠΏΡ€ΡƒΠ³ΠΎΠΉ устойчивости ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½Ρ‹Ρ… конструкций. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСн Π²Ρ‹Π²ΠΎΠ΄ динамичСской ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ТСсткости для структурных Π±Π°Π»ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ руководством ΠΊ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ сборки глобальной динамичСской ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ТСсткости для всСй конструкции ΠΈΠ· ΠΌΠ°Ρ‚Ρ€ΠΈΡ† для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°. Π’Π°ΠΊΠΆΠ΅ ΠΎΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ прСимущСства ΠΌΠ΅Ρ‚ΠΎΠ΄Π° динамичСской ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ТСсткости Π² случаС парамСтричСских расчСтов. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π° ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° расчСта собствСнных Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ трансцСндСнтной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ТСсткости. Π’ дСталях Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΠΊΠ°ΠΊ ΠΌΠ΅Ρ‚ΠΎΠ΄ прямого расчСта собствСнных Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ, Ρ‚Π°ΠΊ ΠΈ ΠΌΠΎΡ‰Π½Ρ‹ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Π’ΠΈΡ‚Ρ‚Ρ€ΠΈΠΊΠ°-Π’ΠΈΠ»ΡŒΡΠΌΡΠ°. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ‚Π°ΠΊΠΆΠ΅ приводится ΠΎΠ±Ρ‰Π΅Π΅ руководство ΠΊ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° динамичСской ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ТСсткости

    Exact elastic stability analysis based on dynamic stiffness method

    No full text
    The article is dedicated to the discussion on the exact dynamic stiffness matrix method applied to the problems of elastic stability of engineering structures. The detailed formulation of the member dynamic stiffness matrix for beams is presented along with the general guidelines on automatisation of the assembly of member dynamic stiffness matrices into the global matrix that corresponds to the whole structure. The advantage of the dynamic stiffness matrix in case of parametric studies is explained. The problem of computing the eigenvalues of transcendental matrix is addressed. The straightforward approach as well as a powerful Witrick-Williams algorithm are discussed in details. The general guidelines on programming the DS matrix method are given as well

    Response localization in disordered structures governed by the Sturm-Liouville differential equation. (Review)

    No full text
    The review is dedicated to the relatively new problem in structural engineering: localization of the response by structural irregularities. This review is aimed to outline all relevant discoveries in the response localization in mechanical problems (vibration, buckling) from the perspective of the common mathematical representation through Sturm-Liouville problem. Two possible approaches to analyze the influence of the disorder are discussed: exact dynamic stiffness formulation of the mistuned structure and the perturbation of the eigen solution of the tuned structure. Both approaches shown to lead to the same localization phenomena end exponential decay of the eigenvector from the source of disorder. In the section dedicated to the buckling mode localization the approach to analyze localization of the randomly disordered multi-span beam based on the Furstenberg’s theorem in presented. The examples of the localization phenomena in the real engineering structures are given.<br/

    Stability of split structures: degeneracy breaking and the role of coupling

    No full text
    The present work is inspired by the need to understand the elastic stability of a class of structures that appear in a variety of seemingly unrelated fields. Here we consider several problems involving the stability of two or more slender structures coupled at the ends. In a sequence, we consider a bilayer beam, then a multilayer split beam, chains of elastically coupled rigid rods, a plate with a symmetric cut out, and finally several plate strips elastically coupled. We also study the instability of a biological structure known as the mitotic spindle. We report cooperative, competitive, and antisymmetric buckling of the bilayer split beam; and their dependence on the geometric parameters. Then we identify the mechanisms of elastic deformation, including additional strain induced by the misfit of two layers tied together at ends, that explains the observed behaviour. This is extended to buckling of a multilayer structure, i.e. a stack of thin elastic layers coupled at the ends. We also report rapid decay of the buckling amplitude of layers along the stacking direction, observed in simple experiments. We theoretically study a chain of elastically coupled rigid rods as the simplest model of this behaviour and report that coupled identical members, in the absence of any disorder, show spatially extended buckling modes, i.e. buckling amplitudes are periodically modulated. Analogies are drawn with a physically unrelated, yet mathematically close problem of wave propagation in periodic media. Introduction of irregularity leads to the spatial exponential decay of the amplitudes, i.e. localisation of buckling modes and thus associated Lyapunov exponents. We show that the strength of buckling localisation depends on the coupling-to-disorder ratio. Next, we study the instability of rectangular plates with one or more cut outs placed periodically. The first problem reveals two types of buckling modes – in-phase buckling and out-of-phase buckling of the two elastically coupled plate strips. Energy contributions from cylindrical bending and twist of the coupling region drive the structure from degeneracy to where the mode character changes. The second problem of multiple strips elastically connected reveals that the in-phase and out-of-phase modes become periodically modulated and the respective buckling loads appear in clusters. If the structure is perfectly ordered, the entire clusters of buckling loads are inverted in the degeneracy point via N-fold crossing. Infinitesimally small disorder triggers repulsion of eigenvalues and strong localisation occurs. We characterise this e↡ect comprehensively by calculating Lyapunov localisation factors and report regions of structural parameters for which high and moderate sensitivity to disorder is observed. Finally, mitotic spindles were studied using continuum modelling of the slender bio-structures also accounting for the interaction with the environment of the cell. Interesting buckling modes with spatial features such as coupled bending and torsion of filaments were observed

    Structural stability of a Mitotic Spindle: parametric Finite element approach

    No full text
    Mitotic spindles are mechanical structures that play a critical role in cell division by generating forces to separate chromosomes. They are ordered assemblages of proteins that make up microtubules (MT) and microtubule connectors whose mechanical properties are responsible for their structural integrity under mitotic forces. We use a continuum mechanics approach to study the stability of equilibrium of a mitotic spindle as a whole. We create and apply a finite element (FE) parameterised model of interpolar MTs, astral MTs and MT connectors varying the number of MT filaments and the arrangement of their interconnections. The model is based on the experimental data on Fission Yeast spindles in late anaphase B and mitotic HeLa cells [1]–[3]. We account for the complex interactions between interpolar MTs, astral MTs, connectors and centrosomes through mechanical coupling. Comparing the results with experiments and Molecular dynamics-based simulations [1], we demonstrate the great potential of Structural mechanics methods to address the stability of spindles. Here we report how buckling states of the spindle get localised towards either of centrosomes due to the irregular placement of microtubules and irregularities in MT coupling. In certain cases, such behaviour may result in nuclear misplacement, asymmetric division or other abnormalities.[1] J. J. Ward, H. Roque, C. Antony, and F. NΓ©dΓ©lec, β€œMechanical design principles of a mitotic spindle,” eLife, vol. 3, p. e03398, 2014.[2] F. Pampaloni, G. Lattanzi, A. Jonas, T. Surrey, E. Frey, and E.-L. Florin, β€œThermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length,” Proc. Natl. Acad. Sci., vol. 103, no. 27, pp. 10248–10253, 2006.[3] F. M. Nixon, C. GutiΓ©rrez-Caballero, F. E. Hood, D. G. Booth, I. A. Prior, and S. J. Royle, β€œThe mesh is a network of microtubule connectors that stabilizes individual kinetochore fibers of the mitotic spindle,” eLife, vol. 4, no. JUNE2015, pp. 1–21, 2015.<br/
    corecore