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ARTICLE

Genome-wide aggregated trans-effects on risk
of type 1 diabetes: A test of the ‘‘omnigenic’’
sparse effector hypothesis of complex trait genetics

Andrii Iakovliev,1 Stuart J. McGurnaghan,2 Caroline Hayward,2 Marco Colombo,3 Debby Lipschutz,2

Athina Spiliopoulou,1 Helen M. Colhoun,2 and Paul M. McKeigue1,*
Summary
The ‘‘omnigenic’’ hypothesis postulates that the polygenic effects of common SNPs on a typical complex trait are mediated through

trans-effects on expression of a relatively sparse set of effector (‘‘core’’) genes. We tested this hypothesis in a study of 4,964 cases of

type 1 diabetes (T1D) and 7,497 controls by using summary statistics to calculate aggregated (excluding the HLA region) trans-scores

for gene expression in blood. From associations of T1D with aggregated trans-scores, nine putative core genes were identified, of which

three—STAT1, CTLA4 and FOXP3—are genes in which variants cause monogenic forms of autoimmune diabetes. Seven of these genes

affect the activity of regulatory T cells, and two are involved in immune responses to microbial lipids. Four T1D-associated genomic

regions could be identified as master regulators via trans-effects on gene expression. These results support the sparse effector hypothesis

and reshape our understanding of the genetic architecture of T1D.
Introduction

The ‘‘omnigenic’’ hypothesis postulates that most of the

genetic effects on a typical complex trait are mediated

through weak trans-effects of common variants that coa-

lesce on expression of a relatively sparse set of ‘‘core’’

effector genes in relevant tissues.1 The rationale for this

hypothesis is based on two established findings: (1) for

a typical complex trait, most of the heritability is ac-

counted for by small effects of many common variants;

(2) for most genes, about 70% of the heritability of

expression is attributable to trans-acting variants of small

effect.2 Genes that have trans-effects on expression of

multiple core genes are termed ‘‘peripheral master

regulators.’’3

As cis-expression quantitative trait loci (cis-eQTLs) usu-

ally have much larger effect sizes than trans-eQTLs, testing

one SNP at a time for association of a disease with variants

influencing gene expression will detect mostly cis-effects.

If gene expression affects disease risk but most of the heri-

tability of expression is attributable to trans-effects, the

associations of the disease with aggregated effects of

trans-acting variants on expression of the gene should

generally be stronger than the associations with cis-acting

variants in that gene. Thus, it may be possible to identify

core genes by using summary results of genome-wide asso-

ciation studies (GWASs) of gene expression in relevant tis-

sues to aggregate the trans-effects on expression of each

gene as a genome-wide trans-score, then testing these

trans-only genotypic scores, one gene at a time, for associ-

ation with the disease.
1Usher Institute, College of Medicine and Veterinary Medicine, University of Ed

and Cancer, College of Medicine and Veterinary Medicine, University of Edi

2XUC, Scotland; 3University of Leipzig, Medical Faculty, University Hospital fo

*Correspondence: paul.mckeigue@ed.ac.uk

https://doi.org/10.1016/j.ajhg.2023.04.003.

The Ame

� 2023 The Author(s). This is an open access article under the CC BY license
For a disease-associated target gene that is identified only

through trans-effects, any evidence of a cis-effect provides

independent validation. Such evidence may come from as-

sociation of disease with a cis-eQTL score for the target

gene or simply with SNPs in or near the target gene. The

most compelling evidence for causality is if the target

gene identified through trans-effects on expression is a

monogenic cause of the disease under study.

A practical limitation to applying this approach to inves-

tigating the genetic architecture of a complex trait is that

GWAS results based on very large samples are required to

learn small trans-effects on gene expression, which are

then aggregated in genome-wide trans- scores. For gene

expression in whole blood it is now feasible to construct

such trans-scores, as results of a meta-analysis based on

31,684 individuals are now available from the eQTLGen

Consortium.4 This approach may be especially applicable

to autoimmune diseases such as type 1 diabetes (T1D)

because leukocytes in blood are a relevant tissue in which

to study effects on gene expression. About half the genetic

information for discrimination in T1D (defined as the log-

arithm of the sibling recurrence risk ratio) is accounted for

by the HLA region5 and about one-quarter by the top 40

SNPs outside the HLA region.6 Thus, although the genetic

architecture of T1D is less polygenic than that of most

other complex traits, there is still a substantial contribu-

tion from polygenic effects.

The objective of this study was to test whether the omni-

genic model applies to T1D with a large case-control data-

set. We sought to determine whether putative core genes

could be identified from associations of T1D with
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genome-wide trans-scores computed by aggregating the

effects of multiple trans-eQTLs or trans-QTLs for circulating

protein levels (trans-pQTLs). We describe also a conven-

tional SNP-by-SNP GWAS analysis and the results of using

cis-eQTL and cis-pQTL scores to investigate possible medi-

ators of SNP associations with T1D that have been reported

previously.
Subjects and methods

The study was carried out in accordance with the ethical principles

in the Declaration of Helsinki and was approved by the Tayside

Research Ethics Committee (reference 10/S1402/43). Informed

consent was obtained from all participants.

Cases and controls
The Scottish Diabetes Research Network Type 1 Bioresource

(SDRNT1BIO) is a consented cohort of 6,127 people clinically

diagnosed as having T1D and aged 16 years and older at recruit-

ment between 2010 and 2013. It comprises one-third of the adult

population with T1D in Scotland.7 Questionnaire data and entry

day samples from this cohort were linked to clinical data from

the Scottish Care Information Diabetes Collaboration electronic

health records. The cases were restricted to those with definite

T1D, defined as at least two insulin prescriptions within 1 year

of diagnosis and no reported diagnosis of monogenic diabetes

on questionnaire. Those who at entry had plasma C-peptide

greater than 600 pmol/L and were negative for three auto-anti-

bodies (glutamic acid decarboxylase, tyrosine phosphatase-related

islet antigen 2, and zinc transporter 8) were excluded as ‘‘possible

type 2,’’ as described previously.8 The controls were participants in

the Generation Scotland Family Health Study, a family-based

cohort of 24,000 volunteers across Scotland aged 18 years and

older at recruitment between 2006 and 2011.9 Individuals were

excluded if they had any record of diabetes based on self report,

linkage to hospital records, or any prescription of insulin or anti-

diabetic oral medications.

Genotyping
The SDRNT1BIO cohort was genotyped with the Illumina

Human Core Exome 24 bead array in the Center for Public

Health Genomics lab in the University of Virginia. The Genera-

tion Scotland cohort was genotyped with the Illumina

OmniExpressExome 8V 1-2A bead array. We applied a standard

quality control (QC) pipeline to the allele signals including

SNP calling with zCall,10 alignment to human genome build

hg19 (GRCh37) and filtering of SNPs to exclude those with mi-

nor allele frequency less than 1%, those that were monomorphic

in the 1000 Genomes11 and UK10K12 reference panels, and

those with genotype frequencies deviant from Hardy-Weinberg

equilibrium (p < 10�10 for non-HLA regions and p < 10�12 for

the HLA region).

Genotypes from case and control cohorts were combined and

checked for heterozygosity and sex concordance. After pruning

to remove SNPs in linkage disequilibrium, we calculated the geno-

type relationship matrix (correlation between genotype vectors).

We performed pruning to remove related individuals until there

were no remaining pairs of individuals with genotype

correlation > 0.05. Principal components were calculated across

the remaining individuals. The genotypes were phased with the
914 The American Journal of Human Genetics 110, 913–926, June 1,
Eagle13 and ShapeIt (duoHMM)14 software packages. We per-

formed imputation against UK10K and 1000 Genomes reference

panels by using the Sanger Institute’s online imputation service.

SNP positions were lifted to genome build hg38 (GRCh38) for all

analyses after this step.
Statistical analyses
For the SNP-by-SNP GWAS, we tested each SNP for association

with T1D in a logistic regression model adjusted for sex, age,

and the first three genotypic principal components by using

SNPTEST15 with imputed genotype probabilities. SNPs with mi-

nor allele frequency less than 0.5% or imputed information con-

tent less than 70% (as calculated by SNPTEST) were excluded. We

annotated the results with genomic regions previously reported

to be associated with T1D. These were based on Robertson et al.

(2021).16 This dataset has 224 hit regions, of which 163 are

outside the HLA region. The candidate gene assigned for each

hit region is that given in the original tables from the Type 1 Dia-

betes Knowledge Portal (https://t1d.hugeamp.org/), Supplemen-

tary Table 9 (dominant/recessive models) of Robertson et al.

(2021),16 and Supplementary Table 5 of Vujkovic et al. (2020).17

The start and end positions of the transcription site of each

gene (not including the promoter region) were obtained from

Ensembl.18

We next constructed scores for aggregated trans-effects on gene

expression and tested for association with T1D. For gene expres-

sion in whole blood, we used summary GWAS statistics obtained

from the eQTLGen meta-analysis4 for 17,422 genes. In that study

only 10,317 trait-associated SNPs, identified from GWAS Catalog

and Immunobase, were tested by eQTLGen for trans-association

with gene expression. We used the GENOSCORES platform19 to

calculate genome-wide trans-scores for expression of each gene

and circulating levels of each protein as follows.

1. Summary statistics were filtered at p < 10�5. For each clump

of variants containing at least one SNP with p < 10�6 and

separated by at least 1 Mb from other such clumps, regres-

sion coefficients for all SNPs in that clump were included

in a locus-specific weights vector. This threshold is less strin-

gent than would be used for declaring association in a

genome-wide study, as our objective was to construct pre-

dictors rather than to test for association.

2. For each clump of SNPs, the correlations between genotypes

for the retained variants were extracted from the European

ancestry subset of the 1000 Genomes panel. Each locus-spe-

cific weights vector was premultiplied by the inverse of this

correlation matrix to adjust for linkage disequilibrium. This

adjustment approximates the regression coefficients that

would be obtained in a multiple regression analysis of the

individual-level GWAS dataset. The locus-specific score

was calculated for each individual as the dot product of

the individual’s genotypes and the adjusted weights vector.

3. Each locus-specific score was classified as cis- if the distance

from the clump to the transcription site of the respective

gene was less than or equal to 50 kb, cis-x if the distance

was 50 kb to 5 Mb, and trans- if the distance was more

than 5 Mb. The genome-wide trans-score was computed as

the sum of locus-specific trans-scores for the target gene.

As the HLA region is a hotspot for trans-eQTLs for genes

involved in the immune system,20 and associations of these

trans-eQTLs with T1D are heavily confounded by the direct
2023
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Figure 1. Flow chart of selection of puta-
tive effector genes
The genes were identified using T1D associ-
ation with genome-wide trans-scores, locus
diversity, and whether the variation in the
gene is a known monogenic cause of T1D.
effects of HLA antigens on T1D risk as described below, the

HLA region (from 25 to 34 Mb on chromosome 6) was

excluded from the computation of genome-wide trans-

scores. This procedure generated 4,824 cis-scores for 4,702

genes and 4,102 genome-wide trans-scores.

Each of these scores was tested for association with T1D in a lo-

gistic regression model with T1D as dependent variable and the

first three genotypic principal components as covariates. All scores

were scaled to have standard deviation of 1 so that the log odds ra-

tios represent the difference in log odds associated with a differ-

ence of 1 standard deviation in the score. The information for

discrimination, in natural log units, can be calculated as half the

square of this standardized log odds ratio.21

Where SNPs that are associated with T1D have pleiotropic trans-

effects on gene expression, we expect genome-wide trans-scores

for these genes to be associated with T1D even if they are only

‘‘bystander’’ genes that are not in the causal path from SNPs to

T1D. Where a trans-score for expression of a gene is associated

with T1D, that gene is more likely to be a core gene if the score

is the sum of multiple locus-specific trans-scores. This is because

aggregating effects of multiple trans-eQTLs on a target gene will

amplify the signal of a core gene but not the noise generated by

trans-effects on the expression of a ‘‘bystander’’ gene. As an index

of the effective number of unlinked trans-eQTLs contributing to

each genome-wide trans-score, we calculated the diversity index
The American Journal of Huma
or Hill number.22 For each gene, the diver-

sity index was computed from the variances

s1;.; sK of the K locus-specific trans-scores

as 2�
P

pi log2pi , where pi ¼ s2i =
P

s2i . This in-

dex can take values from 1, if one of the

eQTLs has much larger variance than the

others, to K, if the variances of the locus-spe-

cific trans-scores are equal. Figure 1 shows a

flow chart of this process for selection of pu-

tative effector genes.

The procedure described above for effects

on gene expression was repeated for effects

on circulating proteins. We extracted sum-

mary GWAS statistics from five studies of

circulating proteins: 48 proteins in plasma

or serum on the Bio-Rad cytokine panel,23

1,478 proteins in plasma on the SomaLogic

panel,24 4,719 proteins in plasma on the

SomaScan v4 panel,25 83 proteins in plasma

on the Olink cardiovascular panel,26 and 70

proteins in plasma on the Olink inflamma-

tion panel.27 We computed cis-scores for

889 proteins and trans-scores for 2,745 pro-

teins. The aggregation of locus-specific

trans-scores into genome-wide trans-scores

was performed in the same manner as for

eQTLs.
For putative core genes identified by this procedure, we tested

for interaction with the effects of the HLA region on T1D risk

by using a case-only test of association between the trans-score

and the risk score for the HLA region. We constructed summary

risk scores for the HLA region on the basis of eight variables

derived from five SNPs that tag class I and class II haplotypes as

described by Oram et al.28 The weights for these eight variables

were learned by fitting a multiple logistic regression model to

the case-control study.

To test whether genetic effects on the frequencies of immune

cell types could explain the associations of T1D with genome-

wide trans-scores for gene expression, we tested for association

of T1D with genome-wide scores for immune cell phenotypes.

We used summary statistics from two studies of immune cell phe-

notypes in peripheral blood29,30 with sample sizes of 497 and

1,629 individuals to calculate genome-wide scores for each im-

mune cell phenotype and tested these scores for association

with T1D.

Results

SNP associations with T1D

We first undertook a conventional SNP-by-SNP GWAS

analysis of this case-control study. Figure 2A shows a

Manhattan plot of the SNP associations with T1D.
n Genetics 110, 913–926, June 1, 2023 915



Figure 2. Manhattan plots for SNPs, locus-
specific trans-scores, and counts of trans-
scores originating from each locus
(A) Manhattan plot of SNP associations with
T1D in case-control study. Minus log10 p
value truncated at 20. SNPs within clumps
of T1D-associated SNPs reported by the
Type 1 Diabetes Knowledge Portal are high-
lighted in blue. A clump is defined by flank-
ing regionsof 20kb if a single SNP is reported.
Each clump with lead SNP (� log10 p > 6) is
labeled with the nearest T1D-associated
gene.
(B) Manhattan-like plot of T1D associa-
tions with locus-specific trans-scores,
excluding the HLA region. Scores for
which �log10 p > 6 are labeled as in (A).
(C) Number of trans-eQTLs that each
genomic region contributes to T1D-associ-
ated genome-wide trans-scores. Each set of
overlapping SNP clumps contributing to
T1D-associated trans-scores defines a re-
gion. Regions contributing to more than
two scores are labeled with previously re-
ported T1D-associated genes.
Clumps of SNPs documented in the Type 1 Diabetes

Knowledge Portal as containing T1D-associated SNPs are

highlighted. Of the regions detected at genome-wide sig-

nificance in this study, two have not previously been

described in detail: the ADAM30 region on chromosome

1 and the COLEC10 region on chromosome 8. The top

SNP in the ADAM30 region was rs406767 at 120.01 Mb,

within the NOTCH2 transcription site. T1D was associ-

ated with the cis-eQTL score for expression of NOTCH2

in whole blood (standardized odds ratio 0.94, p ¼ 53

10�4) and with the cis-pQTL score for REG4 (standardized

odds ratio 0.92, p ¼ 1310�5 ). The top T1D-associated

SNP in the region labeled COLEC10 is at 119.05 Mb

within COLEC10. The only cis-QTL score associated

with T1D in this region is a pQTL score for TNFRSF11B

(transcription site 119.79 to 119.81 Mb, standardized

odds ratio 0.92, p ¼ 23 10�5).

To investigate whether cis-effects on gene expression or

protein levels could help with identifying the local genes

mediating the effects of T1D-associated SNPs, we tested
916 The American Journal of Human Genetics 110, 913–926, June 1, 2023
all cis-eQTL and cis-pQTL scores for as-

sociation with T1D, excluding scores

for genes within the HLA region. Of

4,801 cis-eQTL scores and 1,003 cis-

pQTL scores tested, 11 were associated

with T1D at p < 10�6, as shown in Ta-

ble 1. All these T1D-associated cis-

eQTLs were in regions where T1D-asso-

ciated SNPs have previously been re-

ported, but the cis-eQTL target was

not always the same gene as that to

which the SNP association in that re-

gion had been attributed.
d The association of T1D with SNPs in the 12q13 region

has been attributed to ERBB3.31,32 Table S1 shows

however that the strongest cis-QTL score associations

with T1D in this region were for RAB5B, ERBB3, and

IL-23A.

d The association of T1D with SNPs in the 12q24.12 re-

gion (111.3–111.9 Mb) containing ATXN2 has been

attributed to a non-synonymous SNP in SHB23.31

The T1D-associated SNPs in the 12q24 region lie in

a range from 111.39 to 112.5 Mb, corresponding to

a linkage disequilibrium block in European popula-

tions. Tables 1 and S1 show, however, that the tran-

scription sites of the genes with T1D-associated cis-

eQTL or cis-pQTL scores extend over a broader region

from 108.56 to 114.35 Mb (bands 12q24.11 to

12q24.13), including ISCU, SELPLG, PPTC7, GLTP,

TRAFD1, SDSL and TBX5.

T1D was strongly associated with an extended cis-pQTL

score for NECTIN2 generated by SNPs from 48.59 to 48.74



Table 1. Genes for which cis-eQTL or cis-pQTL score is associated with T1D at p < 10�6

Gene
symbol

Transcription site cis-eQTL score cis-pQTL score

T1D SNP association within
200 kb of transcription siteChr

Start
position (Mb)

Log odds
ratio p value

Log odds
ratio p value

PHTF1 1 113.70 �0.14 53 10�13 – – PTPN22, MAGI3, PHTF1, RSBN1

BACH2 6 89.93 �0.13 23 10�11 – – BACH2

CCDC88B 11 64.34 0.11 73 10�9 – – CCDC88B

RAB5B 12 55.97 0.14 93 10�14 – – RPS26, SUOX

ERBB3 12 56.08 . . �0.14 63 10�13 –

IL23A 12 56.33 �0.16 23 10�17 – – RPS26

ISCU 12 108.56 �0.01 0.4 0.14 13 10�12 –

SELPLG 12 108.62 0.02 0.3 0.11 23 10�9 –

GLTP 12 109.85 – – 0.11 63 10�9 –

PPTC7 12 110.53 �0.14 43 10�13 – – ATXN2

ALDH2 12 111.77 0.01 0.5 0.10 13 10�7 ATXN2, BRAP

TRAFD1 12 112.13 0.11 43 10�8 – – ATXN2, BRAP

SDSL 12 113.42 0.11 23 10�9 0.03 0.2 –

TBX5 12 114.35 – – 0.12 13 10�9 –

PLAUR 19 43.65 0.01 0.5 0.13 13 10�11 –

NECTIN2 19 44.85 �0.02 0.2 �0.12 63 10�11 –

KLK13 19 51.06 – – �0.10 33 10�7 –

UBASH3A 21 42.40 �0.10 13 10�7 – – UBASH3A

The cis-pQTL for NECTIN2 is at 48.59 to 48.74 Mb, 3.7 Mb downstream of the transcription site and contains FUT2.
Mb on chromosome 19, 3.7 Mb downstream of the

transcription site and spanning FUT2. Whether this

should be classified as an extended cis-pQTL is uncertain,

as the 3D Genome Browser33 (see web resources) shows

no Hi-C interactions between the pQTL and the transcript

region in a relevant cell line (Liver-STL011). This extended

cis-pQTL was also a trans-pQTL for CCL15 (Table S6),

contributing to the aggregated trans-score for this chemo-

kine, which was associated with T1D as discussed below.

Associations of T1D with genome-wide trans-scores for

gene expression

We next tested for associations of T1D with trans-scores for

gene expression. By far the strongest associations were

those generated by trans-eQTLs in the HLA region

(Table S2). Of the 1,041 genes for which trans-scores could

be calculated from SNPs in this region, 181 were associated

with T1D at p < 10�6. These genes include the TRAV and

TRBV gene families that encode T cell receptors that recog-

nize the antigens encoded by HLA genes. These associa-

tions of T1D with HLA region-wide trans-scores are so

heavily confounded by the direct effects of HLA antigens

on T1D risk that they are difficult to interpret. To control

this confounding, the HLA region was excluded from the

aggregation of locus-specific trans-scores into genome-

wide scores.
The Ame
We next tested all 4,103 genome-wide trans-scores

for association with T1D. Of these, 309 were associ-

ated at p < 10�6 (Table S3). Figure 2B shows that 44

regions contributed eQTLs to the 219 genome-wide

trans-scores that were associated with T1D at

p < 10�9. Of the 32 regions contributing to two or

more of these 219 T1D-associated genome-wide scores,

ten contained SNPs previously reported as GWAS hits

for T1D. Four regions containing T1D-associated SNPs

contributed to more than five of these scores:

PTPN22 on chromosome 1, BACH2 on chromosome

5, IKZF1 on chromosome 7, and the 12q24 region

containing ATXN2.

For further analysis of the genes with strongest evidence

for a causal relationship of function to T1D, the T1D-asso-

ciated genome-wide trans-scores were restricted to those

that met the following criteria: (1) effective number of

eQTLs greater than 5 and p < 10�9 or (2) monogenic cause

of autoimmune diabetes and p < 10�6. Seven putative core

genes were designated on the basis of criterion (1); STAT1

and FOXP3 were designated as putative core genes on the

basis of criterion (2).

Table 2 summarizes the associations of T1D with the

nine genes designated as putative core genes. Three of

these genes—CTLA4, STAT1, and FOXP3—have been pre-

viously identified as causing monogenic autoimmune
rican Journal of Human Genetics 110, 913–926, June 1, 2023 917



Table 2. Candidates for core gene status

Gene symbol

Transcription site trans-score cis-score
T1D SNP associations
within 200 kb of
transcription site Monogenic diabetesChr

Start
position (Mb)

Effective number
of eQTLs

Log odds
ratio p value

Log odds
ratio p value

Effective number of eQTLs > 5 and p < 10�9

CD1E 1 158.35 6.5 �0.12 83 10�10 �0.02 0.3 – –

CD247 1 167.43 5.8 �0.13 23 10�11 0.02 0.4 – –

CTLA4 2 203.87 7.6 0.21 23 10�28 �0.08 33 10�5 CTLA4 þ

CD5 11 61.10 5.5 0.20 73 10�28 �0.01 0.5 SLC15A3 –

IL10RA 11 117.99 5.7 0.17 93 10�20 �0.02 0.2 – –

MEOX1 17 43.64 5.5 �0.14 23 10�13 0.02 0.2 – –

LGALS3BP 17 78.97 5.3 0.15 73 10�14 0.00 0.8 – –

Monogenic cause of autoimmune diabetes and p < 10�6

STAT1 2 190.91 5.7 0.10 93 10�8 �0.02 0.2 STAT4 þ
FOXP3 X 49.25 2.9 0.23 53 10�35 – – – þ

Criteria for including genes based on association of T1D with trans-score for expression are shown in the header rows. The association of T1D with the cis-score for
that gene is shown if a cis-score was constructed and was associated with T1D at p < 0.001. Any SNP association reported by the Type 1 Diabetes Knowledge
Consortium is shown if the top SNP in the clump was within 200 kb of the transcription site of the target gene. This criterion excludes a clump of T1D-associated
SNPs containing UBE4A, 263 kb downstream of IL10RA. The gene for the SNP association is that identified as the candidate or nearest gene in the original study.
diabetes.34 For four of these genes—CTLA4, STAT1, CD5,

and IL10RA—T1D associations with SNPs in or near the

gene have been reported by the Type 1 Diabetes Knowl-

edge Consortium. For CTLA4, both the cis-score and the

genome-wide trans-score for gene expression were associ-

ated with T1D. Although the cis-effect is in the opposite

direction to the trans-effect, this is explicable as the T1D-

associated SNPs in CTLA4 alter the splicing of the

transcript.35,36

To investigate the specificity of the associations of

genome-wide trans-scores with T1D, we examined the

correlations between these scores in the control group.

Figure S1 shows that the trans-scores for the putative

core genes were not highly correlated with each other.

The only other gene with a trans-score that was highly

correlated (r2 > 0.7) with a trans-score for any of the

putative core genes was PARP3, which was highly corre-

lated (r ¼ 0.86) with the score for LGALS3BP. Table 3

shows that 14 trans-eQTLs within 200 kb of clusters of

SNPs that have been reported as T1D associated contrib-

uted to one or more of the genome-wide trans-scores for

these nine putative core genes. Figures 3 and 4 show that

the trans-eQTLs contributing to the genome-wide scores

for these nine genes include some loci that were weakly

associated with T1D but did not reach genome-wide

significance in this study or in previously reported

studies.

To investigate whether these associations of T1D with

genome-wide trans-scores could be explained by variation

in the profile of immune cell types, we tested for associa-

tion of T1Dwith genome-wide scores for immune cell phe-

notypes. Tables S4 and S5 show that T1D was not associ-

ated with genome-wide scores for any immune cell
918 The American Journal of Human Genetics 110, 913–926, June 1,
phenotypes, including the levels of regulatory T cells as

percentages of T cells and of CD4þ T cells.

Associations of T1D with genome-wide trans-scores for

circulating protein levels

We repeated the procedure for analysis of aggregated

trans-effects by using the scores for trans-effects on circu-

lating protein levels. This yielded five putative core

genes—EIF4G3, CCL19, CRTAM, LIN7B and NCR1—on

the basis of association of T1D at p < 10�9 with a trans-

score for the gene product and effective number of

trans-pQTLs > 5 and another nine—CD5L, CD48,

FCGR3B, GCG, CXCL9, LAG3, CCL15, ICAM2, and

BPIFA2—at the less stringent threshold of p < 10�6 (Ta-

ble 4). Of these, only GCG, which encodes glucagon,

has been previously reported as T1D associated in a con-

ventional SNP-by-SNP GWAS.16 Correlations between

these scores in the control group are weak except for

EIF4G3 and LIN7B (r ¼ 0.74). For LAG3, the expression

score (Table S3) also was strongly associated with T1D

(p ¼73 10�10), but as the effective number of QTLs for

the expression score was only 2.9, it was not included

in Table 2 as a putative core gene.

Table S6 shows that many of the trans-pQTLs contrib-

uting to the T1D-associated genome-wide trans-scores

for these proteins overlapped with regions in which

SNP associations with T1D have previously been re-

ported. Thus, the trans-pQTLs for circulating CXCL9

(chemokine ligand 9) levels included SNPs within 200

kb of the transcription sites of PTPN22, BCL11A, CCR9,

KIAA1109, TULP1, INS, ATXN2, GPR183, and UBASH3A.

All these genes are recorded by the Type 1 Diabetes

Knowledge Consortium as associated with T1D.
2023



Table 3. T1D-associated trans-eQTL regions that contribute to trans-scores for putative core genes

Chr Start position (Mb) End position (Mb)

Genes to which T1D association
with SNPs within 200 kb of the
trans-eQTL region was attributed

Target genes that are putative
core genes

1 113.63 113.83 PTPN22, MAGI3, PHTF1, RSBN1 CD5, CTLA4, FOXP3, CD247, IL10RA

1 199.04 199.04 PTPRC CD1E

2 43.33 43.49 PLEKHH2 CD1E, IL10RA

2 203.88 203.88 CTLA4 MEOX1

5 35.84 35.94 IL7R CTLA4, MEOX1, FOXP3

6 0.41 0.42 IRF4 CTLA4

6 90.10 90.32 BACH2 CD1E, MEOX1, CTLA4

10 6.05 6.07 FBXO18, IL2RA, PFKFB3,
DKFZP667F0711

CTLA4

11 128.53 128.54 FLI1 MEOX1

12 56.00 56.00 RPS26, SUOX CD5

12 110.90 112.66 ATXN2, BRAP STAT1, LGALS3BP

14 98.02 98.03 C14orf64 CD5

17 45.44 45.83 STH LGALS3BP

17 46.71 46.78 STH, NSF LGALS3BP

trans-eQTL regions are shown if they are within 200 kb of a clump of T1D-associated SNPs and contribute to one or more trans-scores for the putative core genes in
Table 2.
Discussion

On the basis of aggregating the effects of multiple trans-

eQTLs, this study identifies nine top candidates as putative

core genes for T1D. Trans-eQTL effects of T1D-associated

SNPs on STAT1 have been noted previously.4,37 Although

four of these are validated by evidence of cis-effects as

defined above, the only one thatwouldhave been identified

as a core gene for T1D in a conventional SNP-by-SNP GWAS

analysis is CTLA4. Of these putative core genes, seven are

involved in induction and activity of CD4þ regulatory

T cells (Tregs). FOXP3 is the canonical marker and regulator

of Tregs.38 CTLA4 is expressed on Tregs where it inhibits

CD28-mediated activation of T cells.39 STAT1 mediates the

inhibition by IFNg of induction of Tregs40; gain-of-function

mutations in STAT1 cause autoimmune diabetes. CD5 pro-

motes induction of Tregs by blocking mTOR activation.41

IL10RA activates STAT3 in Tregs, which suppresses Th17 in-

flammatory responses.42 SNPs in IL10, which encodes the

ligand, are associated with T1D. MEOX1 overexpression re-

programsTregs to acquire a transcriptionalprofileassociated

with tumor infiltration.43 CD247 encodes the CD3z chain

subunit of the T cell receptor complex. In congenic strains

derived from the NOD mouse model, the NOD allele at

Cd247 is associatedwith lowerexpressionofCTLA-4 inTregs

and with higher rates of autoimmune diabetes.44

The other two putative core genes are involved in the

innate and acquired immune response to lipids (usually

of microbial origin). LGALS3BP inhibits transforming

growth factor b-activated kinase 1-dependent activation
The Ame
of nuclear factor-kB by lipopolysaccharides.45 CD1E is ex-

pressed intracellularly, where it modulates the loading of

lipid antigens onto other CD1 isotypes that are displayed

at the cell surface.46

As T1D was not associated with genotypic scores for the

absolute or relative levels of Tregs or with scores for other

immune cell phenotypes, it is unlikely that the associa-

tions of T1D with trans-scores for genes such as FOXP3

that are expressed by Tregs can be explained by effects

on the abundance of this cell type, although this cannot

be ruled out, as the summary statistics we used to calculate

scores for immune cell phenotypes were based on studies

with relatively modest sample sizes.

The proportion of non-HLA heritability of T1D that is ac-

counted for by the trans-scores in Table 2 is modest. For the

FOXP3 trans-score, for instance, the information for

discrimination (calculated as half the square of the stan-

dardized log odds ratio) is 0.026 natural log units, which

is about 2% of the non-HLA genetic information for

discrimination for T1D, assuming that the total genetic in-

formation for discrimination is about 2.5 (equivalent to

sibling recurrence risk ratio of 12) and that half of this is

contributed by genes outside the HLA region. The current

version of the eQTLGen meta-analysis tested only 10,317

SNPs previously identified as trait-associated for trans-asso-

ciation with gene expression. As this will have missed

many trans-eQTLs, our study is likely to underestimate

the contribution of core genes to T1D.

Another limitation of the current version of the eQTL-

Gen dataset is that the gene expression assays do not
rican Journal of Human Genetics 110, 913–926, June 1, 2023 919



Figure 3. Trans-eQTLs contributing to trans-scores for CTLA4, CD247, IL10RA, and CD5
(A–D) eQTLs for the first four putative core genes in Table 2, CTLA4 (A), CD247 (B), IL10RA (C), and CD5 (D), are overlaid on the Man-
hattan plot of SNP associations with T1D. The cis-eQTL for each core gene is indicated with amagenta line, and trans-eQTLs contributing
to the genome-wide trans-score for each core gene are indicated with blue lines. The T1D-associated regions reported by Type 1 Diabetes
Knowledge Portal are labeled in red where they overlap with the loci contributing to the genome-wide trans-scores.
necessarily distinguish between splicing variants that may

be differentially regulated by trans-eQTLs. Both FOXP347

and CTLA435,36 are expressed in alternatively spliced iso-

forms that have different functional effects: this may

explain why the trans-score associations of these genes

with T1D are in the opposite direction to that expected
920 The American Journal of Human Genetics 110, 913–926, June 1,
given that loss-of-function mutations in these genes cause

autoimmune diabetes.

The overlap of trans-eQTLs for these putative core genes

with regions in which SNP associations with T1D have

been reported suggests that some SNP associations that

have no obvious interpretation in terms of cis-effects,
2023



Figure 4. Trans-eQTLs contributing to trans-scores for FOXP3, LGALS3BP, STAT1, CD1E , and MEOX1
(A–E) eQTLs for the last five putative core genes in Table 2, FOXP3 (A), LGALS3BP (B), STAT1 (C), CD1E (D), and MEOX1 (E), are overlaid
on the Manhattan plot of SNP associations with T1D. The cis-eQTL for each core gene is indicated with a magenta line, and trans-eQTLs
contributing to the genome-wide trans-score for each core gene are indicated with blue lines. The T1D-associated regions reported by the
Type 1 Diabetes Knowledge Portal are labeled in red where they overlap with the loci contributing to the genome-wide trans-scores.
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Table 4. Candidates for core gene status based on trans-effects on protein levels

Protein name
Gene encoding
protein

Transcription site trans-score cis-score

Chr
Start
position (Mb)

Effective number
of pQTLs

Log odds
ratio p value

Log odds
ratio p value

Eukaryotic translation initiation
factor 4 gamma 3

EIF4G3 1 20.81 13.0 �0.12 13 10�10 – –

CD5 antigen-like CD5L 1 157.83 15.7 0.10 63 10�8 �0.01 0.6

CD48 antigen CD48 1 160.68 10.0 0.10 73 10�8 �0.03 0.2

Low affinity immunoglobulin
gamma Fc region receptor III-B

FCGR3B 1 161.62 10.5 0.10 53 10�7 0.01 0.7

Glucagon GCG 2 162.14 8.0 0.09 63 10�7 – –

Monokine induced by interferon-
gamma (CXCL9)

CXCL9 4 76.00 11.4 0.10 23 10�7 �0.06 0.001

C-C motif chemokine 19 CCL19 9 34.69 9.4 0.16 23 10�16 0.04 0.05

Cytotoxic and regulatory T cell
molecule

CRTAM 11 122.84 9.8 0.15 13 10�15 �0.02 0.3

Lymphocyte activation gene 3 protein LAG3 12 6.77 16.4 0.09 83 10�7 – –

C-C motif chemokine 15 CCL15 17 36.00 19.9 �0.11 23 10�8 �0.02 0.2

Intercellular adhesion molecule 2 ICAM2 17 64.00 18.0 0.10 53 10�7 – –

Protein lin-7 homolog B LIN7B 19 49.11 15.9 �0.12 23 10�10 – –

Natural cytotoxicity triggering
receptor 1

NCR1 19 54.91 7.7 0.12 13 10�10 0.05 0.01

BPI fold-containing family
A member 2

BPIFA2 20 33.16 6.0 0.10 23 10�7 0.04 0.02

Genes included in this table are those with trans-scores that are associated with T1D at p < 10�6, with effective number of pQTLs > 5.
such as the association of T1D with SNPs in the PLEKHH2

and NSF regions, may be explicable as trans-effects on the

expression of core genes. We can tentatively identify four

regions containing ‘‘peripheral master regulators’’ for

T1D on the basis that they contribute trans-effects to mul-

tiple genes for which genome-wide trans-scores are associ-

ated with T1D. These regions are PTPN22, BACH2, IKZF1,

and the 12q24 region containing ATXN2 and SH2B3. Not

surprisingly, SNPs in these regions containing master

regulators are associated with multiple autoimmune

disorders.48

Applying the same approach to circulating proteins

identifies a different set of putative core genes, most of

which are biologically relevant to T1D. One of the most

interesting is NCR1, which may underlie the tissue speci-

ficity of the autoimmune reaction in T1D. NCR1 encodes

the NKp46 receptor expressed by natural killer (NK) cells,

which recognizes an unknown ligand expressed by pancre-

atic b cells; knockout of Ncr1 or blocking of the gene prod-

uct inhibits the development of autoimmune diabetes in

the NOD mouse.49 CRTAM encodes a receptor expressed

on the cell surface of activated NK and CD8þ T cells. In

the RIP-mOVA mouse model, knockout of Crtam in the

donor strain inhibits induction of autoimmune diabetes

by exogenous CD8þ T cells.50 LAG3 encodes an immune

checkpoint receptor; deletion of this gene in the NOD

mouse accelerates development of autoimmune dia-
922 The American Journal of Human Genetics 110, 913–926, June 1,
betes.51 CXCL9, CCL15, and CCL19 encode chemokines.

CXCL9 is expressed in pancreatic b cells in response to

pro-inflammatory cytokines,52 and deletion of the gene

encoding its receptor CXCR3 accelerates diabetes in the

NOD mouse.53 CCL15 is expressed in the intestinal mu-

cosa as an antibacterial peptide.54 CCL19 is the ligand for

CCR7, a receptor expressed on lymphocytes; in the NOD

mouse, migration of T cells into inflamed islets is depen-

dent on CCR7.55 CD48 encodes a signaling molecule that

regulates innate and adaptive immune responses through

binding to the CD244 receptor on NK and other cytotoxic

cells.56 CD5L, initially reported as an apoptosis inhibitor,

binds pathogen-associated molecular patterns, suggesting

a role in innate immune response.57 EIF4G3 regulates

translation in lymph node stromal cells of genes that affect

antigen presentation.58

The sets of putative core genes identified by eQTL and

pQTL analyses do not overlap, with the exception of

LAG3. This is not surprising, as the genes identified

through eQTL analysis are mostly transcription factors or

receptors expressed on the surface of immune cells, while

pQTL analysis can detect only genes that affect circulating

protein levels. We would not expect leukocytes in periph-

eral blood to contribute much to the levels of these

proteins.

Although the main focus of this paper is the identifica-

tion of effector genes and master regulators via trans-
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effects, we have also used cis-eQTL and cis-pQTL associa-

tions to investigate cis-acting effects on T1D and to iden-

tify the genes most likely to mediate some previously re-

ported SNP associations with T1D. For the 12q13 region

containing ERBB3, a plausible candidate for the mediator

is IL23A, which encodes a subunit of interleukin-23. This

cytokine induces immune-mediated b cell damage and dia-

betes in a mouse model.59 The association of T1D with

SNPs in FUT2 has been widely attributed to FUT2, as one

of the top T1D-associated SNPs is a non-synonymous

variant that determines ABO blood group antigen secretor

status. However, no biological mechanism for the associa-

tion of FUT2 with T1D has been established. The cis-pQTL

analysis suggests NECTIN2, which modulates T cell

signaling by binding to the CD226 receptor, as a possible

mediator. SNPs in CD226 are associated with T1D, and

deletion of this gene protects against diabetes in the

NOD mouse.60

The approach used in this study—using summary GWAS

results on gene expression to construct trans-only geno-

typic scores and then testing these for association in an in-

dividual-level study of the disease or trait of interest—com-

plements the conventional SNP-by-SNP analysis of a

GWAS, where detection of a SNP association with disease

is followed by attempts to identify the gene that mediates

this association. Our approach falls into the general cate-

gory of transcriptome-wide association study designs. As

our objective is specifically to detect effector genes through

which the effects of many weak trans-eQTLs are mediated,

we have constructed a procedure to maximize the detec-

tion of such genes on the basis of using summary-level

data from a large study of gene expression to calculate

genome-wide scores that aggregate the trans-effects on

expression of each gene and then testing these scores for

association with the disease under study. A related

approach is ‘‘expression quantitative trait score’’ (eQTS)

analysis in which summary-level GWAS data are used to

construct genome-wide polygenic scores for traits of inter-

est that were tested for individual-level association with

gene expression in the eQTLGen dataset.4 One limitation

of the eQTS method is that it does not distinguish trans-

and cis-effects on expression of each gene. A more funda-

mental limitation may be that testing for association of

expression of each gene with a polygenic score for the dis-

ease is less statistically powerful than testing the aggre-

gated effects of weak trans-eQTLs directly because any asso-

ciations of disease with trans-eQTL effects on expression of

a gene are diluted by the other SNPs included in the poly-

genic score. Another related approach that uses only sum-

mary statistics has been described as ‘‘aggregative trans-

eQTL analysis,’’ which computes canonical correlations

between linear combinations of SNPs associated with

expression of each gene and linear combinations of SNPs

on the trait of interest.61 A limitation of that approach is

that SNP associations are coded only as present/absent:

the size and direction of effects on gene expression and

the trait of interest are ignored.
The Ame
These results support the omnigenic hypothesis in that

selecting genome-wide trans-scores that are generated by

multiple trans-QTLs and are strongly associated with T1D

identifies a set of genes that were mostly not detected in

a conventional SNP-by-SNP analysis but are biologically

highly relevant to T1D. Some of these putative effector

genes are validated by cis-effects, by experimental models,

or by effects of other genes in the same pathway. For

clarity, we suggest a revision of terminology: ‘‘core genes’’

can include both master regulators and effector genes,

and the ‘‘omnigenic’’ hypothesis can be more precisely de-

noted as the sparse effector gene hypothesis. The hypoth-

esis has implications for how GWASs should be analyzed,

suggesting that analysis should focus on identifying

effector genes through aggregated trans-eQTL effects rather

than on identifying which SNP, in a cluster of SNPs with

tiny effects on the outcome, is the functional variant.

Core gene effects may be more robust than SNP associa-

tions to variation between populations.62 The method

described here is readily applicable to other disorders of

the immune system for which whole blood is a relevant tis-

sue in which to study gene expression. Wider application

of this approach will require availability of more compre-

hensive summary-level results from large GWASs of gene

expression in various tissues and measurements of genetic

effects on splicing variants and post-transcriptional

modification.
Data and code availability

All code used in this analysis is available at https://github.

com/molepi-precmed/trans-qtls. Summary-level data is

available from https://doi.org/10.5281/zenodo.7786862.

Accredited researchers may apply to the Public Benefit

and Privacy Panel for access to the individual-level data.

The application should be submitted via HSC-PBPP

website https://www.informationgovernance.scot.nhs.uk/

pbpphsc/. The platform used to compute locus-specific

genotypic scores and the database of published

GWAS summary statistics are accessible on the https://

genoscores.cphs.mvm.ed.ac.uk/ platform. The corre-

sponding R package will be shared on request. Annotation

of the known T1D associations was taken from Type 1 Dia-

betes Knowledge Portal: https://t1d.hugeamp.org.
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