214 research outputs found

    Bioinspired negatively charged calcium phosphate nanocarriers for cardiac delivery of MicroRNAs

    No full text
    Aim: To develop biocompatible and bioresorbable negatively charged calcium phosphate nanoparticles (CaP-NPs) as an innovative therapeutic system for the delivery of bioactive molecules to the heart. Materials & methods: CaP-NPs were synthesized via a straightforward one-pot biomineralization-inspired protocol employing citrate as a stabilizing agent and regulator of crystal growth. CaP-NPs were administered to cardiac cells in vitro and effects of treatments were assessed. CaP-NPs were administered in vivo and delivery of microRNAs was evaluated. Results: CaP-NPs efficiently internalized into cardiomyocytes without promoting toxicity or interfering with any functional properties. CaP-NPs successfully encapsulated synthetic microRNAs, which were efficiently delivered into cardiac cells in vitro and in vivo. Conclusion: CaP-NPs are a safe and efficient drug-delivery system for potential therapeutic treatments of polarized cells such as cardiomyocytes

    Characterization of a Toothpaste Containing Bioactive Hydroxyapatites and In Vitro Evaluation of Its Efficacy to Remineralize Enamel and to Occlude Dentinal Tubules

    Get PDF
    Demineralization of dental hard tissues is a well-known health issue and the primary mechanism responsible for caries and dentinal hypersensitivity. Remineralizing toothpastes are nowadays available to improve conventional oral care formulations regarding the prevention and repair of demineralization. In this paper, we analyzed the chemical-physical features of a commercial toothpaste (Biosmalto Caries Abrasion and Erosion, Curasept S.p.A., Saronno, Italy), with particular attention paid to the water-insoluble fraction which contains the remineralizing bioactive ingredients. Moreover, the efficacy of the toothpaste to induce enamel remineralization and to occlude dentinal tubules has been qualitatively and semiquantitatively tested in vitro on human dental tissues using scanning electron microscopy and X-ray microanalysis. Our results demonstrated that the water-insoluble fraction contained silica as well as chitosan and poorly crystalline biomimetic hydroxyapatite doped with carbonate, magnesium, strontium, and fluoride ions. The formulation showed excellent ability to restore demineralized enamel into its native structure by epitaxial deposition of a new crystalline phase in continuity with the native one. It was also able to occlude the dentinal tubules exposed completely by acid-etching. Overall, this study demonstrated that the tested toothpaste contained a biomimetic ionic-substituted hydroxyapatite-based active principle and that, within the in vitro conditions analyzed in this study, it was effective in dental hard tissue remineralization

    Synthetic Crysotile Nano-Crystals as a Reference Standard to Investigate Surface-Induce Serum Albumin Structural Modifications

    Get PDF
    Geoinspired synthetic chrysotile, which represents an ideal asbestos reference standard, has been utilized to investigate homomolecular exchange of bovine serum albumin (BSA), the major plasma protein, between the adsorbed and dissolved state at the interface between asbestos fibers and biological medium. FTIR spectroscopy has been used to quantify BSA structural modifications due to surface adhesion on chrysotile fibers as a function of the surface coating extent. Circular dichroism spectroscopy has been used to investigate the adsorption/desorption equilibrium through analysis of the BSA structural perturbations after protein desorption from chrysotile surface. Data results show clearly that in the solid state BSA modifications are driven by surface interaction with the substrate, following a bimodal adsorption evidenced by two different binding constants. On the other hand, BSA desorbed in solution is able to rearrange, in the lack of substrate, although keeping irreversible modifications with respect to the native species. The lack of regaining its native structure certainly affects albumin interaction with biological environment. The present investigation on the stoichiometric synthetic geoinspired chrysotile nanocrystals is the first approach toward a deeper attempt to use standard synthetic chrysotile reference samples in mimicking the behavior of asbestos fibers and allows to better understand their interaction with a biological environment

    Natural, biphasic calcium phosphate from fish bones for enamel remineralization and dentin tubules occlusion

    Get PDF
    Objectives: A calcium phosphate extracted from fish bones (CaP-N) was evaluated for enamel remineralization and dentinal tubules occlusion. Methods: CaP-N was characterized by assessing morphology by SEM, crystallinity by PXRD, and composition by ICP-OES. CaP-N morphology, crystallinity, ion release, and pH changes over time in neutral and acidic solutions were studied. CaP-N was then tested to assess remineralization and dentinal tubules occlusion on demineralized human enamel and dentin specimens (n = 6). Synthetic calcium phosphate in form of stoichiometric hydroxyapatite nanoparticles (CaP-S) and tap water were positive and negative controls, respectively. After treatment (brush every 12 h for 5d and storage in Dulbecco's modified PBS), specimens’ morphology and surface composition were assessed (by SEM-EDS), while the viscoelastic behavior was evaluated with microindentation and DMA. Results: CaP-N consisted of rounded microparticles (200 nm - 1 μm) composed of 33 wt% hydroxyapatite and 67 wt% β-tricalcium phosphate. In acidic solution, CaP-N released calcium and phosphate ions thanks to the preferential β-tricalcium phosphate phase dissolution. Enamel remineralization was induced by CaP-N comparably to CaP-S, while CaP-N exhibited a superior dentinal tubule occlusion than CaP-S, forming mineral plugs and depositing new nanoparticles onto demineralized collagen. This behavior was attributed to its bigger particle size and increased solubility. DMA depth profiling and SEM showed an excellent interaction between the newly formed mineralized structures and the pristine tissue, particularly at the exposed collagen fibrils. Significance: CaP-N demonstrated very good remineralizing and occlusive activity in vitro, comparable to CaP-S, thus could be a promising circular economy alternative therapeutic agent for dentistry

    Calcium phosphate particles coated with humic substances: A potential plant biostimulant from circular economy

    Get PDF
    Nowadays, the use of biostimulants to reduce agrochemical input is a major trend in agriculture. In this work, we report on calcium phosphate particles (CaP) recovered from the circular economy, combined with natural humic substances (HSs), to produce a plant biostimulant. CaPs were obtained by the thermal treatment of Salmo salar bones and were subsequently functionalized with HSs by soaking in a HS water solution. The obtained materials were characterized, showing that the functionalization with HS did not sort any effect on the bulk physicochemical properties of CaP, with the exception of the surface charge that was found to get more negative. Finally, the effect of the materials on nutrient uptake and translocation in the early stages of development (up to 20 days) of two model species of interest for horticulture, Valerianella locusta and Diplotaxis tenuifolia, was assessed. Both species exhibited a similar tendency to accumulate Ca and P in hypogeal tissues, but showed different reactions to the treatments in terms of translocation to the leaves. CaP and CaP\u2013HS treatments lead to an increase of P accumulation in the leaves of D. tenuifolia, while the treatment with HS was found to increase only the concentration of Ca in V. locusta leaves. A low biostimulating effect on both plants\u2019 growth was observed, and was mainly scribed to the low concentration of HS in the tested materials. In the end, the obtained material showed promising results in virtue of its potential to elicit phosphorous uptake and foliar translocation by plants

    Mussel shell-derived macroporous 3D scaffold: Characterization and optimization study of a bioceramic from the circular economy

    Get PDF
    Fish industry by-products constitute an interesting platform for the extraction and recovery of valuable compounds in a circular economy approach. Among them, mussel shells could provide a calcium-rich source for the synthesis of hydroxyapatite (HA) bioceramics. In this work, HA nanoparticles have been successfully synthesized starting from mussel shells (Mytilus edulis) with a two steps process based on thermal treatment to convert CaCO3 in CaO and subsequent wet precipitation with a phosphorus source. Several parameters were studied, such as the temperature and gaseous atmosphere of the thermal treatment as well as the use of two different phosphorus-containing reagents in the wet precipitation. Data have revealed that the characteristics of the powders can be tailored, changing the conditions of the process. In particular, the use of (NH4)2HPO4 as the phosphorus source led to HA nanoparticles with a high crystallinity degree, while smaller nanoparticles with a higher surface area were obtained when H3PO4 was employed. Further, a selected HA sample was synthesized at the pilot scale; then, it was employed to fabricate porous 3D scaffolds using the direct foaming method. A highly porous scaffold with open and interconnected porosity associated with good mechanical properties (i.e., porosity in the range 87–89%, pore size in the range 50–300 μm, and a compressive strength σ = 0.51 ± 0.14 MPa) suitable for bone replacement was achieved. These results suggest that mussel shell by-products are effectively usable for the development of compounds of high added value in the biomedical field

    On the use of superparamagnetic hydroxyapatite nanoparticles as an agent for magnetic and nuclear in vivo imaging

    Get PDF
    The identification of alternative biocompatible magnetic NPs for advanced clinical application is becoming an important need due to raising concerns about iron accumulation in soft issues associated to the administration of superparamagnetic iron oxide nanoparticles (NPs). Here, we report on the performance of previously synthetized iron-doped hydroxyapatite (FeHA) NPs as contrast agent for magnetic resonance imaging (MRI). The MRI contrast abilities of FeHA and Endorem® (dextran coated iron oxide NPs) were assessed by 1H nuclear magnetic resonance relaxometry and their performance in healthy mice was monitored by a 7 Tesla scanner. FeHA applied a higher contrast enhancement, and had a longer endurance in the liver with respect to Endorem® at iron equality. Additionally, a proof of concept of FeHA use as scintigraphy imaging agent for positron emission tomography (PET) and single photon emission computed tomography (SPECT) was given labeling FeHA with 99mTc-MDP by a straightforward surface functionalization process. Scintigraphy/x-ray fused imaging and ex vivo studies confirmed its dominant accumulation in the liver, and secondarily in other organs of the mononuclear phagocyte system. FeHA efficiency as MRI-T2 and PET-SPECT imaging agent combined to its already reported intrinsic biocompatibility qualifies it as a promising material for innovative nanomedical applications. STATEMENT OF SIGNIFICANCE: The ability of iron-doped hydroxyapatite nanoaprticles (FeHA) to work in vivo as imaging agents for magnetic resonance (MR) and nuclear imaging is demonstrated. FeHA applied an higher MR contrast in the liver, spleen and kidneys of mice with respect to Endorem®. The successful radiolabeling of FeHA allowed for scintigraphy/X-ray and ex vivo biodistribution studies, confirming MR results and envisioning FeHA application for dual-imaging

    Stearate-coated biogenic calcium carbonate from waste seashells:a sustainable plastic filler

    Get PDF
    Waste seashells from aquaculture are a massive source of biogenic calcium carbonate (bCC) that can be a potential substitute for ground calcium carbonate and precipitated calcium carbonate. These last materials find several applications in industry after a surface coating with hydrophobic molecules, with stearate as the most used. Here, we investigate for the first time the capability of aqueous stearate dispersions to coat bCC powders from seashells of market-relevant mollusc aquaculture species, namely the oyster Crassostrea gigas, the scallop Pecten jacobaeus, and the clam Chamelea gallina. The chemical-physical features of bCC were extensively characterized by different analytical techniques. The results of stearate adsorption experiments showed that the oyster shell powder, which is the bCC with a higher content of the organic matrix, showed the highest adsorption capability (about 23 wt % compared to 10 wt % of geogenic calcite). These results agree with the mechanism proposed in the literature in which stearate adsorption mainly involves the formation of calcium stearate micelles in the dispersion before the physical adsorption. The coated bCC from oyster shells was also tested as fillers in an ethylene vinyl acetate compound used for the preparation of shoe soles. The obtained compound showed better mechanical performance than the one prepared using ground calcium. In conclusion, we can state that bCC can replace ground and precipitated calcium carbonate and has a higher stearate adsorbing capability. Moreover, they represent an environmentally friendly and sustainable source of calcium carbonate that organisms produce by high biological control over composition, polymorphism, and crystal texture. These features can be exploited for applications in fields where calcium carbonate with selected features is required

    Inhalable microparticles embedding calcium phosphate nanoparticles for heart targeting: The formulation experimental design

    Get PDF
    Inhalation of Calcium Phosphate nanoparticles (CaPs) has recently unmasked the potential of this nanomedicine for a respiratory lung-to-heart drug delivery targeting the myocardial cells. In this work, we investigated the development of a novel highly respirable dry powder embedding crystalline CaPs. Mannitol was selected as water soluble matrix excipient for constructing respirable dry microparticles by spray drying technique. A Quality by Design approach was applied for understanding the effect of the feed composition and spraying feed rate on typical quality attributes of inhalation powders. The in vitro aerodynamic behaviour of powders was evaluated using a medium resistance device. The inner structure and morphology of generated microparticles were also studied. The 1:4 ratio of CaPs/mannitol led to the generation of hollow microparticles, with the best aerodynamic performance. After microparticle dissolution, the released nanoparticles kept their original size
    corecore