60 research outputs found

    Feasibility of laparoscopic portal vein ligation prior to major hepatectomy

    Get PDF
    AbstractBackground. Patients noted to have an inadequate future liver remnant on pre operative volumetric assessment are considered to be candidates for portal vein embolization (PVE). A subset of patients undergo laparoscopic intervention prior to PVE for staging purposes or to address the primary in Stage IV colon cancer. These patients usually undergo PVE as a subsequent additional procedure by the transhepatic route. The aim of this study was to assess the feasibility of portal vein ligation by the laparoscopic approach in suitable patients. Materials and methods. A retrospective review of a prospectively maintained database was performed to identify patients that underwent laparoscopic portal vein ligation (LPVL). The demographic, clinical, radiographic, operative and volumetric details were collected to determine the feasibility of portal vein ligation. Results. A total of nine patients underwent LPVL as part of a two stage procedure in preparation for subsequent major hepatectomy. With a median age of 67 yrs, the diagnoses included: colorectal metastasis (five patients), cholangiocarcinoma (three patients) and hepatocellular carcinoma (one patient). The ligation involved the right portal vein in all and was performed with silk ligature (seven patients) and clips (two patients). Volumetric data was available in six patients which showed a mean increase from 209.1 cc±97.76 to 495.83 cc±310.91 (increase by 181.5%) In two patients, inadequate hypertrophy mandated later embolization by percutaneous technique. Five patients underwent subsequent major hepatic resection as planned. The remaining four patients were noted to have progression of disease that precluded the planned procedure. There were no complications associated with LPVL. Conclusions. LPVL is feasible and can be safely performed. In a select group of patients, it may be considered as an alternative to subsequent embolization and thereby potentially absolve the need for an additional procedure with its attendant complications

    Delayed Accumulation of H3K27me3 on Nascent DNA Is Essential for Recruitment of Transcription Factors at Early Stages of Stem Cell Differentiation

    Get PDF
    Recruitment of transcription factors (TFs) to repressed genes in euchromatin is essential to activate new transcriptional programs during cell differentiation. However, recruitment of all TFs, including pioneer factors, is impeded by condensed H3K27me3-containing chromatin. Single-cell and gene-specific analyses revealed that, during the first hours of induction of differentiation of mammalian embryonic stem cells (ESCs), accumulation of the repressive histone mark H3K27me3 is delayed after DNA replication, indicative of a decondensed chromatin structure in all regions of the replicating genome. This delay provides a critical “window of opportunity” for recruitment of lineage-specific TFs to DNA. Increasing the levels of post-replicative H3K27me3 or preventing S phase entry inhibited recruitment of new TFs to DNA and significantly blocked cell differentiation. These findings suggest that recruitment of lineage-specifying TFs occurs soon after replication and is facilitated by a decondensed chromatin structure. This insight may explain the developmental plasticity of stem cells and facilitate their exploitation for therapeutic purposes

    N-Acetyl Cysteine May Support Dopamine Neurons in Parkinson\u27s Disease: Preliminary Clinical and Cell Line Data.

    Get PDF
    BACKGOUND: The purpose of this study was to assess the biological and clinical effects of n-acetyl-cysteine (NAC) in Parkinson\u27s disease (PD). METHODS: The overarching goal of this pilot study was to generate additional data about potentially protective properties of NAC in PD, using an in vitro and in vivo approach. In preparation for the clinical study we performed a cell tissue culture study with human embryonic stem cell (hESC)-derived midbrain dopamine (mDA) neurons that were treated with rotenone as a model for PD. The primary outcome in the cell tissue cultures was the number of cells that survived the insult with the neurotoxin rotenone. In the clinical study, patients continued their standard of care and were randomized to receive either daily NAC or were a waitlist control. Patients were evaluated before and after 3 months of receiving the NAC with DaTscan to measure dopamine transporter (DAT) binding and the Unified Parkinson\u27s Disease Rating Scale (UPDRS) to measure clinical symptoms. RESULTS: The cell line study showed that NAC exposure resulted in significantly more mDA neurons surviving after exposure to rotenone compared to no NAC, consistent with the protective effects of NAC previously observed. The clinical study showed significantly increased DAT binding in the caudate and putamen (mean increase ranging from 4.4% to 7.8%; p CONCLUSIONS: The results of this preliminary study demonstrate for the first time a potential direct effect of NAC on the dopamine system in PD patients, and this observation may be associated with positive clinical effects. A large-scale clinical trial to test the therapeutic efficacy of NAC in this population and to better elucidate the mechanism of action is warranted. TRIAL REGISTRATION: ClinicalTrials.gov NCT02445651

    The LARGE Principle of Cellular Reprogramming: Lost, Acquired and Retained Gene Expression in Foreskin and Amniotic Fluid-Derived Human iPS Cells

    Get PDF
    Human amniotic fluid cells (AFCs) are routinely obtained for prenatal diagnostics procedures. Recently, it has been illustrated that these cells may also serve as a valuable model system to study developmental processes and for application in regenerative therapies. Cellular reprogramming is a means of assigning greater value to primary AFCs by inducing self-renewal and pluripotency and, thus, bypassing senescence. Here, we report the generation and characterization of human amniotic fluid-derived induced pluripotent stem cells (AFiPSCs) and demonstrate their ability to differentiate into the trophoblast lineage after stimulation with BMP2/BMP4. We further carried out comparative transcriptome analyses of primary human AFCs, AFiPSCs, fibroblast-derived iPSCs (FiPSCs) and embryonic stem cells (ESCs). This revealed that the expression of key senescence-associated genes are down-regulated upon the induction of pluripotency in primary AFCs (AFiPSCs). By defining distinct and overlapping gene expression patterns and deriving the LARGE (Lost, Acquired and Retained Gene Expression) Principle of Cellular Reprogramming, we could further highlight that AFiPSCs, FiPSCs and ESCs share a core self-renewal gene regulatory network driven by OCT4, SOX2 and NANOG. Nevertheless, these cell types are marked by distinct gene expression signatures. For example, expression of the transcription factors, SIX6, EGR2, PKNOX2, HOXD4, HOXD10, DLX5 and RAXL1, known to regulate developmental processes, are retained in AFiPSCs and FiPSCs. Surprisingly, expression of the self-renewal-associated gene PRDM14 or the developmental processes-regulating genes WNT3A and GSC are restricted to ESCs. Implications of this, with respect to the stability of the undifferentiated state and long-term differentiation potential of iPSCs, warrant further studies

    Directed differentiation of embryonic stem cells using a bead-based combinatorial screening method

    Get PDF
    We have developed a rapid, bead-based combinatorial screening method to determine optimal combinations of variables that direct stem cell differentiation to produce known or novel cell types having pre-determined characteristics. Here we describe three experiments comprising stepwise exposure of mouse or human embryonic cells to 10,000 combinations of serum-free differentiation media, through which we discovered multiple novel, efficient and robust protocols to generate a number of specific hematopoietic and neural lineages. We further demonstrate that the technology can be used to optimize existing protocols in order to substitute costly growth factors with bioactive small molecules and/or increase cell yield, and to identify in vitro conditions for the production of rare developmental intermediates such as an embryonic lymphoid progenitor cell that has not previously been reported

    Multiresolution tomographic inversion from an incomplete data set

    No full text
    This paper illustrates a seismic tomographic imaging technique using stochastic a priori information about structural geological morphology. The method is based on a multiresolution representation, which allows incorporating into conventional Markov Random Field models probabilistic constraints between different scales. A MAP Bayesian iterative solution is proposed to perform inversion of largely ill conditioned problems in presence of a limited angular coverage and a limited number of ray-paths
    corecore