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Abstract

We have developed a rapid, bead-based combinatorial screening method to determine optimal combinations of variables
that direct stem cell differentiation to produce known or novel cell types having pre-determined characteristics. Here we
describe three experiments comprising stepwise exposure of mouse or human embryonic cells to 10,000 combinations of
serum-free differentiation media, through which we discovered multiple novel, efficient and robust protocols to generate a
number of specific hematopoietic and neural lineages. We further demonstrate that the technology can be used to optimize
existing protocols in order to substitute costly growth factors with bioactive small molecules and/or increase cell yield, and
to identify in vitro conditions for the production of rare developmental intermediates such as an embryonic lymphoid
progenitor cell that has not previously been reported.
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Introduction

As embryonic development is mediated by a succession of

signals that bring about key cell fate decisions, differentiation of

pluripotent stem cells in vitro is directed by recapitulating stages of

the developmental process using a series of cell culture steps.

Examples of such stepwise protocols include the differentiation of

embryonic stem (ES) cells into motor neurons [1], oligodendro-

cytes [2], dopaminergic neurons [3], red blood cells [4],

macrophages [5], hepatocytes [6], islet cells [7], germ cells [8]

and many others [9]. Typically, such stem cell differentiation

protocols are derived empirically and their development involves

much futile effort. Therefore screening technologies capable of

testing large numbers of protocols in parallel are required for

systematic searches of the experimental space.

We have developed ‘Combinatorial Cell Culture (CombiCult)

[10,11], a bead-based screening technology that allows miniatur-

isation and multiplexing of large numbers of stepwise cell culture

experiments, increasing throughput by orders of magnitude (for an

overview see Fig S1; movie S1 or http://www.plasticell.co.uk/

combicult/technology). Briefly, beads seeded with stem cells are

shuffled randomly through multiple, predetermined combinations

of cell culture media using a split-pool process analogous to that

used in combinatorial chemistry. Each cell culture medium is

spiked with a distinctive fluorescent tag that attaches to the bead

substrate, allowing us to track the history of each bead. Following

the split-pool process, beads are assayed to identify those on which

stem cells have differentiated to a specific cell type (‘hits’). Hits are

isolated using a large particle flow sorter and the beads are

digested to release the fluorescent tags accumulated during the

course of the experiment. These are analysed using a flow

cytometer to deconvolute the cell culture history of the beads and

thereby deduce differentiation protocols. A customised bioinfor-

matics program (Ariadne) is used to collate data and perform

statistical analysis to predict the most robust and effective

protocols. Finally, a subset of candidate protocols is validated to

quantitate cell yield, and study lineage markers and functional

attributes of the resulting cells (for detailed protocols see Materials

and Methods).

We have used this technology to derive differentiation protocols

for the generation of various developmental intermediates and

terminally differentiated cells. Here we report three experiments

comprising combinatorial screening of ten different media in each

of four stages of differentiation (Fig 1a, Fig S12), equal to

10610610610 unique combinations or 10,000 putative differen-

tiation protocols. In the first experiment we used mouse embryonic

stem (mES) cells and screened simultaneously for two diverse

phenotypic endpoints (phagocytes and neuroectodermal cells),

while in the following pair of experiments we used either mES or
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Figure 1. Mouse phagocytic screen. (a) Schematic diagram illustrating design of the CombiCult screen. Ten different cell culture media were
tested in each of four stages of differentiation by split-pool passaging cells seeded onto beads in differentiation media spiked with tags, on day 1
(D1), D2, D5 and D7. On D14 beads were assayed to identify beads bearing phagocytes or neuroectodermal precursors (‘hits’). A total of 300,000
beads were used in the experiment to test 10,000 protocols so that on average each protocol was sampled by 30 beads. (b) Fluorescence
micrographs showing hits bearing (i) red fluorescent phagocytic cells or (ii) GFP-positive neuroectoderm cells amongst negative beads. Scale bars =
100 mm. (c) Cummulative large particle flow sorter dot plots, showing parameters used to sort hits. (i) Gating of monomeric beads (gate 1) from
higher order agreggates. (ii) Sorting of monomeric beads with high red (gate 2) and green (gate 3) fluorescent signal. (d) Micrograph images of
sorted hits: (i) bead 31 (phagocyte), (ii) bead 131 (phagocyte), (iii) bead 76 (neuroectoderm), (iv) bead 34 (neuroectoderm) and (v) bead 34 (phagocyte
and neuroectoderm). Scale bars = 100 mm. (e) Deconvolution of cell culture history of bead 31 (pictured in d(i) above; one of a triple hit from the
phagocyte screen) by FACS analysis of bound tags. A set of 30 unique tags distinguishable by size (small, medium, large) and fluorescence intensity
(ten levels for each size set) was used to spike cell culture media in the first three stages of differentiation. The figure shows magenta peaks
corresponding to quantitation of a reference sample of the 30 tags used to calibrate the flow cytometer (histograms and tag numbers shown in
magenta) in order to set gates. Quantitation of tags released from bead 31 is superimposed in black, showing detection of tags SR10, MR1 and LR8,
corresponding to media 1.10, 2.1 and 3.8. (f) Schematic diagram illustrating an overlay of all protocols deconvoluted from phagocyte hits. The height
of boxes representing each cell culture medium is proportional to the number of hits generated by that medium (written at the bottom of each box).
The opacity of the linkage lines is proportional to the number of hits generated by specific media combinations - the darkest line corresponds to 21
hits. (g) Hierarchical clustering analysis of 92 unique protocols derived from the phagocyte screen, showing protocol clusters A and B. Each node at
the bottom of the dendrogram (leaf node) corresponds to a hit bead. The associated protocol is denoted by the column of four colours directly
below the node, specifying the media sampled in splits 1–4. The legend at the bottom of the figure specifies the colour used to denote the cell
culture media in each split. (h) Similarity matrix comprising a pair-wise comparison of all protocols. Each column and each row corresponds to a
protocol. The brightness of each cell in the matrix is proportional to the number of identical cell culture media shared by the two protocols. The
brightest cell corresponds to identical protocols, while a black cell corresponds to two protocols with no common media. The diagonal row of cells
(from the top left to bottom right) corresponds to protocols being compared to themselves. Protocol families with high internal homology appear as
bright red squares, e.g. Clusters A and B marked on the diagram, with Cluster A protocols being more conserved. (i) Efficiency of phagocyte and/or
neuroectoderm cell generation from mES cells on PTC5000 beads using a selection of protocols discovered by CombiCult. Coloured bars represent
the number of fluorescent colonies per square centimeter (64 fields of view). Red bars correspond to phagocytic colonies, green bars correspond to
GFP-expressing (neuroectodermal) colonies, orange bars correspond to beads with both phagocytic and neuroectodermal colonies, black bars
correspond to negative protocols. Hit bead numbers and protocols listed below the histograms are coloured to show whether they were derived
from phagocyte- (red), neuroectoderm- (green) or phagocyte/neuroectoderm- (orange) bearing hits, whereas black corresponds to two negative
protocols – i.e. protocols which did not return any hits, these represent a range of 12 protocols tested, all but one (shown) had 0 colonies. Each bar
represents the average of 2 wells (each one containing 4000 beads) and the graph is representative of 3 separate experiments. Protocols with a
statistically significant difference (p.0.05) to the negative control are marked with an asterisk (*).
doi:10.1371/journal.pone.0104301.g001
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human embryonic stem (hES) cells and screened for a common

phenotypic endpoint (dopaminergic neurons).

Materials and Methods

mES cell culture
ES cell lines 46C Sox1-GFP and Oct4GiP cells (Stem Cell

Sciences) were grown on 0.1% gelatin-coated plastic dishes in

mES cell growth medium (KO-DMEM containing 1X non-

essential amino acids (NEAA),1X GlutaMax, 0.5X penicillin/

streptomycin (Life Technologies), 15% FBS (ES qualified, ATCC),

0.1 mM b-mercaptoethanol (Sigma) and 1000 U/ml Leukemia

Inhibitory Factor (LIF) (Millipore)), in a humidified incubator at

37uC and 5% CO2.

hES cell culture
Shef6 hES cells (UK Stem Cell Bank) were grown on mitomycin

C inactivated mouse embryonic fibroblasts in hES cell growth

medium (KO-DMEM supplemented with 20% KSR (Life

Technologies), 1X GlutaMAX, 1X NEAA, 0.1 mM b-mercapto-

ethanol and 4 ng/mL bFGF(R&D)). For seeding, cells were

harvested by washing in PBS and then incubated with TryplEx-

press (Life Technologies) for 5 min at 37uC. Following incubation,

cells were dislodged by pipetting to obtain single cell suspensions,

and centrifuged before being resuspended in complete media and

counted.

Combinatorial Cell Culture
(a) Screen for mouse macrophages. During the complete

differentiation process cells on beads are maintained in a 37uC
humidified incubator with 5% CO2.

On day 1 (d1) of the experiment ,36105 PTC5000 beads

(Plasticell) were equilibrated in each of ten media for split 1 (Table

S1 in File S1), transferred into 8 wells of a 100 mm square Petri

dish (25 wells; Bibby Sterilin) in 3 ml/well containing ,4000

beads, and seeded by adding 46105 mES cells in 0.1 mL of

DMEM to each well and mixing thoroughly. Beads in different

media were coded by adding adherent tags with a bead to tag ratio

of 1:500 (see below). On d2, d5 and d7 of the experiment, beads

from the different media groups were transferred into separate

70 mm cell strainers (Falcon), washed with DMEM to remove

residual medium and unbound tags, then beads were pooled,

mixed thoroughly and split equally into 10 new sets. Each set was

resuspended in one of the media for split 2, spiked with an

Figure 2. Analysis of phagocytes derived from mES cells using
validated protocols discovered by CombiCult. Two protocol
clusters generated two different types of phagocytes: Cluster B
protocols gave rise to typical monocytes and macrophages while
Cluster A protocols generated phagocytic cells that resemble B1a
lymphocytes. Each panel is representative of at least 3 separate
experiments. (a) Wright-Giemsa staining of cells generated on beads by
protocol: (i) 0777 (Cluster B), (ii) 3897 (Cluster B), (iii and iv) 0185 (Cluster
A), Scale bar = 5 mm. (b) Phagocytic cells on beads identified by
pHrodo assay: (i) protocol 2277 (Cluster B) produced large vacuolarised
phagocytes that attach loosely to beads. (ii) protocol 0185 (Cluster A)
produced colonies of tightly adherent cells. Scale bars = 100 mm. (c)
Colony formation by mES-derived hematopoietic precursor cells in
MethoCult. Precursors generated by Cluster B protocols gave rise to a
range of monocytic, granulocytic or mixed type colonies; average
colony formation efficiency was 361024. (i) CFU-G (granulocytic)

colonies and (ii) CFU-M (monocytic) colonies formed using protocol
2277, (iii) CFU-M colonies formed using protocol 0887, (iv) mixed type
(CFU-GEMM) colonies formed using protocol 3897. Scale bars =
100 mm. (d) Flow cytometry analysis of cells isolated from MethoCult
following differentiation according to Cluster B protocols: (i) CD45 and
(ii) CD11b staining of cells derived using protocol 3897. Black dotted
lines represent the populations stained with a corresponding isotype
control overlaid with the experimental population in red. (e) Flow
cytometry analysis of cells differentiated for 15 days on microcarriers
using protocol 0185 (Cluster A). In each histogram the black dotted line
represents the population stained with a corresponding isotype control
overlaid with the experimental population in red. The percentage of
positively stained cells is shown in each panel. (i) CD45, (ii) CD11b, (iii)
CD45R/B220, (iv) CD3e and (v) CD5 (vi) CD45R/B220 vs. CD3e with
corresponding isotype control dot plot and (vii) CD45R/B220 vs. CD5
with corresponding isotype control dot plot. (f) Colony formation by
mES derived progenitors in MethoCult supplemented with IIL7.
Precursors generated by protocol 0185 (day 9) gave rise to round
compact colonies. Average colony formation efficiency was 2610-3 (i)
10X magnification and (ii) 20X magnification. Scale bar is 100 mm.
doi:10.1371/journal.pone.0104301.g002
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appropriate tag and plated in 8 wells of a 100 mm square Petri

dish (as above). Following d7, the medium in each group was

replaced with fresh medium (not containing tags) on d9 and d12.

During the last split no tags were added to the media.

For the chemical screen on d1 of the experiment 8.16105 46C

cells were seeded on 96104 PTC5000 beads at 90 cells per bead in

complete mES medium supplemented with FCS and LIF and next

day (d2) beads were washed with DMEM and transferred into

serum-free, LIF-free neuro-ectodermal medium containing ITS

and RA (media 2.10Table S1 in File S1). On day 5 beads were

split equally into 30 chemical mixtures (Table S2 in File S1) and

each one was individually tagged (bead to tag ratio 1:200). On day

7 beads were washed, pooled and split into 30 further conditions.

On day 9 beads were washed and transferred into DMEM

containing 1% ITS and 0.1% BSA. Media were refreshed on days

12 and 15. A phagocytosis assay was performed on d15 and d22.

(b) Screen for mouse dopaminergic neurons. On the day

preceding the start of a split-pool experiment (d0), 4.86106

PTC5000 beads were equilibrated in standard mES growth

medium and transferred to 12 well suspension culture plates

(Greiner Bio) at a concentration of 4000 beads/well in 2 mL of

media. mES cells were seeded onto beads by adding 1 ml of media

containing 1.26105 cells to each well, then left to attach overnight.

On d1 all beads were pooled, washed in serum free media and split

equally into 10 tubes. The beads in each tube were resuspended in

the media and tags required for the first split (Table S3 in File S1),

and transferred into 12 wells of a 12 well suspension plate (Greiner

Bio). On d7, 15 and 21, beads from different media groups were

transferred into separate 70 mm cell strainers (Falcon), washed

with DMEM to remove residual medium and unbound tags; then

beads were pooled, mixed thoroughly and split equally into 10 sets

which were incubated in media and tags as required for the next

stage of the experiment, except the last split were no tags were

added (Table S3 in File S1). Fresh media (not containing tags)

were added on d18 and d24.

(c) Screen for human dopaminergic neurons. On day 0

(d0), 4.86106 PTC5000 beads were equilibrated in standard hES

growth medium and plated into 12 well suspension culture plates

(Greiner Bio) at a concentration of 4000 beads/well in 2 mL of

media. hES cells were seeded onto beads by adding 1 ml of media

containing 3.66105 cells to each well, then left to attach for

48 hours. On d2 all beads were pooled, washed in serum free

media and split equally into 10 tubes. The beads in each tube were

then resuspended into each one of the 10 media and tags required

for the first split (Table S4 in File S1) and transferred into 12 wells

of a 12 well suspension plate. On d8, 16 and 22 of the experiment,

beads from the different media groups were transferred into

separate cell strainers, washed with DMEM to remove residual

medium and unbound tags, then beads were pooled, mixed

thoroughly and split equally into 10 sets which were incubated in

media and tags as required for the next stage of the experiment,

except the last split were no tags were added (Table S4 in File S1).

Fresh media (not containing tags) were added on d19 and d25.

Phagocytosis assay
Beads were washed in DPBS and incubated with 1 mg/mL

pHrodo E.coli BioParticles conjugate (Molecular Probes) in

HBSS/HEPES buffer (pH 7.4) at 37uC for 2 hrs. The supernatant

was removed and the beads were washed with HBSS/HEPES

buffer (pH 7.4) once and then resuspended in the same buffer

before being either sorted using the large particle sorter (COPAS

PLUS, Union Biometrica), or photographed using a Nikon Eclipse

2000 microscope. An aliquot from the pool of beads was

counterstained with calcein green to assess cell coverage and

viability (Fig S3A).

For comparison, cells differentiated with either a positive

control media or a negative control media (Stemline alone) were

subjected to the pHrodo assay (Fig S3B).

Immunostaining of mouse and human dopaminergic
neurons

Cells on PTC5000 beads were washed in DPBS (Mg+ Ca+)

twice and fixed in 4% paraformaldehyde for 20 min at room

temperature. Following another wash in DPBS (Mg+ Ca+), cells

were permeabilised using 0.25% Triton X-100 in PBS for 20 min

at 25uC. Cells were then incubated in blocking solution (0.25%

Triton, 1% BSA in PBS) for 30 min at 25uC and then incubated in

the appropriate primary antibody diluted in blocking solution at

4uC overnight. Following primary antibody incubation, beads

were washed 3 times in DPBS (Mg+ Ca+) incubated in secondary

antibody solution for 2 hours at 25uC, then washed 3 times in

DPBS (Mg+ Ca+) and resuspended in DPBS (Mg+ Ca+).

Antibodies used: primary: Rb anti-tyrosine hydroxylase (Milli-

pore-AB152), Ms anti-bIII tubulin (Sigma clone 2G10), Goat anti-

FOXA2 (Abcam) Secondary: Alexa Fluor 594 goat anti-rabbit

IgG, Alexa Fluor 488 goat anti-rabbit IgG, Alexa Fluor 488 goat

anti-mouse IgG, Alexa-Fluor 350 donkey anti-goat IgG (Life

Technologies).

Hit sorting
Hits were sorted using a COPAS PLUS (Union Biometrica)

large particle flow sorter equipped with 488 nm and 561 solid state

lasers and Green PMT 514/23 nm, Yellow PMT 585/20 nm,

Red PMT 615/45 nm optical emission filters. The instrument was

calibrated using a reference sample of beads. Sorting gates for size

(TOF), optical density (EXT) and fluorescence parameters for

each experiment were set using representative samples of beads

that contained both cells and tags and were labelled with

secondary antibody only. For the phagocyte screen the gates were

set using a sample of tagged beads bearing cells grown under non-

differentiating conditions, subjected to pHrodo assay. Beads were

sorted at a speed of 50/sec and those decorated with red or green

fluorescent cell clusters were dispensed automatically into separate

wells of a 96-well plate. As this sorter can only sort on one channel

at a time, in screen 1, the same sample of beads was run twice; first

to sort for phagocytosis positive beads (red) and then neuroecto-

dermal (green) positive beads. Fig S4 shows the two single colour

controls samples run on the COPAS for gate setting. The sorting

gate for the phagocytic (red) beads spilled across the double

positive quadrant to sort any beads containing both phagocytic

and neuroectodermal cells.

Wells were subsequently checked using a Nikon Eclipse 2000-S

inverted epifluorescent microscope equipped with filter sets for

visualization of TRITC, DAPI, GFP-B (all from Nikon) and Cy5.5

(Chroma Technology).

Tags and FACS analysis
Tags used in the experiment comprised thirty unique popula-

tions of inert fluorescent microspheres (Plasticell) that adhere

strongly to PTC5000 beads under cell culture conditions. Discrete

populations in the size range of 1–10 microns were assigned

according to diameter (three size groups: S, M, L) and fluorescence

intensity (ten gradations for each size group). The binding

efficiency of all tag species to the beads was very similar, thus

there was no significant bias towards a specific interaction (Fig.

S2c). Tags were analyzed using FACSCanto II equipped with 488,

Directed Differentiation of Embryonic Stem Cells
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635 and 405 nm lasers (Red PMT 710/50 nm) [Becton Dick-

inson] flow cytometer. Prior to tag analysis, a reference tag set was

used to establish side and forward scattering gates and to calibrate

fluorescence intensity of each tag set. Digestion of beads with tags

did not affect the position of the tags in the flow cytometry plots

(Fig S2a–b). Tag identification was performed using Ariadne

bioinformatics software (Plasticell). Fluorescence histograms of

each scattering gate and FSC/Red fluorescence plots were used to

identify clusters of events with correlated scattering and fluores-

cence parameters, which are mapped to cell culture media as

detailed in Tables S1–S4 in File S1. Clusters are identified when

they contain $ 3 events with near identical scattering and

fluorescence values. If two or more clusters of events were

identified which mapped to cell media from the same split and/or

the signal to noise ratio was too low, an accurate identification was

not recorded.

Probability simulations
Probability values for the occurrence of given events by chance

were obtained from computer simulation experiments. A Mers-

enne Twister [12] random number generator was used to output

uniformly distributed 32-bit integers which were scaled to cover

10,000, 1,000 or 100 possible pathways, when simulating common

cell culture media on four out of four splits, three out of four splits

or two out of four splits. Simulation begins by setting tally counters

associated with each pathway to zero. To simulate probabilities for

phagocyte screen, 96 paths were chosen at random and their

counters incremented. Should any such counter exceed the

specified threshold (2, 3, 4, 5, …, n beads per pathway), a positive

result was recorded. Event probabilities were computed by

repeating the process 100 million times and dividing the number

of positive results by the total number of simulations, resulting in

probability values accurate to eight decimal places. To obtain

probabilities for events in the neuroectoderm screen, and the

mouse dopaminergic neuron screen, 87 and 378 paths respectively

were randomly chosen.

Differentiation protocols for mouse phagocytes and
neural progenitors validated on beads

For protocol validation studies, beads were transferred between

media without splitting and pooling and without including

fluorescent labels. On d1 of the experiment PCT5000 (Plasticell)

or FACTIII (Solohill) beads were equilibrated in media and mES

cells were seeded onto beads by adding 46105 cells in 0.1 mL of

DMEM to each well containing 4000 beads in 3 mL of media

(,100 cells/bead). At each stage of differentiation media were

decanted, beads washed twice in DMEM and the next media in

the series were added. On d9 and d12 media were refreshed

without washing. For each protocol validated, two independent

wells were prepared. On d15, duplicate samples for each protocol

were analyzed for phagocytic activity or GFP fluorescence (neural

progenitors) and levels quantified from images obtained by

epifluorescence microscopy using a Nikon Eclipse 2000 inverted

microscope, and NIS-elements software.

Hematopoietic colony forming assays
Cells were differentiated on FACTIII (Solohill) beads until d9,

then harvested with trypsin/EDTA (Sigma), washed once with

10% FBS in DMEM, sieved through a 70 mm strainer and

resuspended in IMDM media supplemented with 2% FCS. Cell

suspensions were mixed with MethoCult semisolid media (M3434,

StemCell Technologies) at a final concentration of 16105 cells/ml

according to manufacturer’s instructions. Colonies were scored

after 2 weeks of incubation at 37uC in a humidified incubator with

5% CO2. MethoCult media containing Il-7 (M3630, Stem Cell

Technology) was used to study B-lymphoid progenitors.

FACS analysis of hematopoietic cells
Cells differentiated on FACTIII (Solohill) beads were harvested

with Accutase solution (1X Accutase in DPBS, Sigma A6964). To

analyze cells from colony forming units, semisolid media were

diluted with staining/blocking solution (3% FBS in DPBS) and

treated with Accutase to disrupt colonies. Prior to staining with

specific antibody or the corresponding isotype control, cells were

incubated with mouse BD Fc block (#553142, BD Biosciences).

Antibodies and corresponding isotype controls used: anti-mouse

CD11b-APC (clone M1/70), anti-mouse CD45-PE (clone 30-F11),

anti-mouse CD3e-APC (clone145-2C11), anti-mouse CD45R/

B220-APC or PE (clone RA3-6B2), anti-mouse CD5-APC (clone

53-7.3), anti-mouse CD43-PE (clone S7), anti-mouse CD19-PE

(clone 1D3) and anti-mouse IgM-APC (clone 11/41) all purchased

from BD Biosciences. A FACS Canto II flow cytometer was used

for analysis.

FACS sorting of hematopoietic cells
D15 cells differentiated on beads according to cluster B

protocols were harvested with 0.25% trypsin/EDTA (Life

technologies) and diluted with staining/blocking solution (3%

FBS in DPBS). Prior to staining with specific antibody or the

corresponding isotype control, cells were incubated with mouse

BD Fc block (#553142, BD Biosciences). The antibodies and

corresponding isotype controls used were anti-mouse CD11b-APC

(clone M1/70) and APC-Rat IgG2a isotype control, both

purchased from BD Biosciences. Cells were incubated with

antibody for 1 hour on ice, washed twice with 3% FBS in PBS,

and then sorted using a FACS Aria flow sorter (BD Bioscience).

The live cells were gated using a propidium iodide (PI) stained

control and the sorting gates were set using the isotype control

stained cells. Both the CD11b positive and the CD11b negative

cells were collected. The CD11b positive cells were plated into 2

wells of a 96 well tissue culture plate in Stemline medium (Sigma)

containing TPO, IL3 and IL6 (All from R&D) and incubated at

37uC for 1 h to allow the cells to attach. After the incubation

period the media were removed and the cells subjected to the

pHrodo assay (Life Technologies) as above, then counterstained

with calcein green. Cells were subsequently photographed using a

Nikon Eclipse 2000 epifluorescence microscope.

Maturation of cluster A-derived cells
Cells were harvested from beads at d15 of differentiation using

Accutase, and cultured on OP9 feeder layers in MEM alpha, 10%

FBS, 1X NEAA, 1X GlutaMax, 10 ng/mL IL7 and 20 ng/mL

SDF1. Cells were re-plated onto fresh OP9 feeder layers once a

week. Flow cytometry analyses were carried out after 2 and 3

weeks of co-culture. In parallel d15 differentiated cells were plated

onto MethoCult supplemented with IL7 (Stem Cell Technologies)

as per manufacturer’s instructions and analyzed by flow cytometry

2 and 3 weeks after seeding.

Mice and embryos
Embryos were obtained from C57BL/6 timed pregnant female

mice (2–3 months old). Yolk sac (YS), aorta-gonad-mesonephros

(AGM) region and when available foetal livers were isolated from

E9 (20–28 somite pairs, s.p.), E10 (32–37s.p.) and E11 (40–47 s.p.)

embryos and single cell suspensions obtained following collagenase

treatment [13]. Mice were housed and bred in compliance with
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Home Office regulations and with approval of The University of

Edinburgh Ethical Review Committee. Two separate experiments

were performed and an average of 8 pregnant females were used

per experiment.

Mouse embryo cell isolation and analysis
Multicolour flow cytometry analysis of embryonic tissues was

performed using LSR Fortessa (BD). Cell populations were

isolated using a FACSAria II cell sorter (BD). The following

anti-mouse antibodies (all from BD Pharmingen) were used for

staining: anti-CD45 BD V500 or BD V450 (clone 30-F11); anti-

CD5 BD V450 or PE clone (53-7.3); anti-CD43 FITC (clone S7);

anti-B220-PE-cy7 (clone RA3-6B2); anti-CD3e-APC (clone 145-

2C11); anti-CD19-PE or PerCP-cy5.5 (clone 1D3); anti-Ter119-

V500 or PerCPcy5.5. Gating strategy was defined based on

fluorescence minus one (FMO) control staining where one of each

antibody was substituted by isotype control (IC) conjugated with

corresponding fluorochrome. All analyses and sorting were done

on the basis of 7AAD dead cell and Ter119+ cell exclusion.

Differentiation protocols for dopaminergic neurons
validated on beads

Equilibrated PTC5000 beads were plated onto 12 well

suspension plates (Greiner Bio) at 4000 beads/well in 2 mL of

complete growth media. To each well 1 mL of cells were added at

a concentration of 1.26105 cells/mL (mES 46C Sox-1 GFP) or

3.66105 cells/mL (hES Shef6) and left to attach for either 24

(mES) or 48 (hES) hours. For each protocol validated, two

independent wells were prepared.

After the attachment period, media were decanted; beads

washed twice in DMEM (in situ) and appropriate media for each

stage of differentiation added. After 1 week the washing process

was repeated and the media for the next stage of differentiation

added. In between stages, media were refreshed by exchanging

half the volume with fresh media. At the end of the differentiation

period beads were washed, fixed, immunostained and analysed

using COPAS (Union Biometrica Inc.)

Differentiation protocols for dopaminergic neurons
validated by EB formation

Cells were harvested enzymatically, counted and transferred to

bacteriological grade 10 cm dishes in mES cell growth medium.

After cell aggregation, which usually required 24–48 hours, EBs

were cultured in stage 1 media for seven days, then plated on

adherent six well plates previously treated with 0.1% gelatin and

cultured in stage 2 media, with media replacement every 2–3 days.

Every seven days appropriate media for each stage of differenti-

ation were introduced and refreshed every 2–3 days. Cells were

passaged onto new laminin-coated wells on becoming confluent.

Finally cells were fixed in 4% paraformaldehyde, immunostained

as described and analysed by epifluorescence microscopy using a

Nikon Eclipse 2000 inverted microscope, and NIS-elements

software.

Differentiation protocols for dopaminergic neurons
validated on monolayer culture

mES and hES cells were harvested enzymatically and plated on

either 0.1% gelatine (mouse) or CELLstart (Life Technologies)

(human) at pre-defined densities and allowed to attach overnight

in standard mES or hES growth media. After 24 h (or 48 h), the

media were changed as directed by the differentiation protocols,

with media refreshment every 2–3 days. Cells were passaged onto

new plates pre-coated with laminin when they became confluent.

At the end of the differentiation period the cells were fixed in 4%

paraformaldehyde, immunostained as described and analysed by

epifluorescence microscopy using a Nikon Eclipse 2000 inverted

microscope, and the NIS-elements software.

Results

Differentiation of mES cells to haematopoietic
phagocytes and/or neuroectoderm

In a first experiment we asked whether our system could identify

mES cell differentiation protocols from combinations of media

previously reported to direct ES cell differentiation towards

ectodermal, mesodermal and endodermal lineages (Fig 1a,Table

S1 in File S1). We hypothesised this extremely diverse screening

matrix would contain media combinations that direct stem cell

differentiation to a variety of cell types from all germ layers. At the

end of the screen we assayed beads using red fluorescent bacterial

particles to detect those bearing phagocytic cells (Fig 1b (i)). The

rationale of using such a broad functional assay was to determine

whether we could identify different types of phagocytic cells – e.g.

macrophages [14], dendritic cells or B1 lymphocytes [15–18] –

and if so to compare the protocols that generated each cell type.

Additionally, in this experiment we used an mES cell line that

contains a GFP reporter of Sox-1 expression, which marks early

neuroectoderm [19,20], hence green fluorescence was used to

detect differentiation towards a neural fate (Fig 1b (ii)). We

expected to find that neuroectodermal cells and phagocytes are

generated by very different protocols.

From over 250,000 monomeric beads screened at the end of our

experiment (see Fig 1c, Gate 1), we identified and sorted a total of

137 red fluorescent hits (0.05%) (Fig 1 c–d). The rare incidence of

fluorescent beads implies that only few combinations of culture

conditions successfully directed differentiation towards phagocytic

lineages. Fewer than 10 of these red fluorescent beads also

contained traces of green fluorescence (Fig 1d (v)), indicating that

the majority of phagocytes had appeared owing to directed, not

spontaneous differentiation. Ninety-six hits (70%) carried sufficient

tags to deduce the identity and sequence of media to which they

had been exposed - i.e. the differentiation protocol. The remaining

beads lacked sufficient tags from at least one split, or failed owing

to total loss of the tag sample during handling (for a breakdown of

causes see Data S1, Table 6).

Analysis of tags from each bead (Fig 1e), as well as comparison

of the differentiation protocols deduced from all hits (Fig 1f), was

performed using Ariadne (Data S1 for all hits). Since similarity

amongst the putative differentiation protocols discovered by

combinatorial cell culture likely indicates protocol efficacy, we

first used hierarchical clustering analysis to group protocols

(Fig 1g) and then scored a pairwise comparison of each (Fig 1h).

In this way we identified two interesting protocol clusters with

substantial internal homology: one group of 18 protocols was

characterized predominantly by common media in the first two

stages of differentiation (i.e. media 1.10 and 2.1, termed Cluster

A), while a second group of 23 protocols featured common media

in the final two stages (i.e. media 3.8/3.9 and 4.7, termed Cluster

B).

Each of the media combinations tested by CombiCult is

sampled by multiple beads, allowing statistical analysis of results.

In the present experiment, 300,000 beads were used to test 10,000

protocols, therefore maximally efficient protocols should in theory

return on average 30 hits (although taking into account factors

such as bead loss during the experiment, in practice we would

expect many fewer). We found three protocols within Cluster A

that returned multiple hit beads: in particular, protocol 0185 (i.e.
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media combination 1.10R2.1R3.8R4.5) returned three hits,

while protocols 0115 and 0145 each returned pairs of hits. We

used a simulation algorithm to estimate the probability that a

protocol would return multiple hits by chance, given the number

of protocols screened and the number of hit beads obtained. In our

dataset - in which 96 hits were derived from a screen of 10,000

protocols - a triple hit from the same protocol would occur

randomly once in every thousand repetitions of the experiment

and therefore its occurrence in our screen is likely to be significant

(i.e. indicate a highly effective protocol).

We selected 17 protocols (including multiple hit protocols) for

further study from the two protocol clusters (the relationship of

these protocols is analysed in detail in Fig.S5). We tested these by

differentiating mES cells on PTC5000 beads used in the screening

experiment and determined that 14 protocols consistently directed

differentiation to phagocytes in this system (Fig 1i). By quantitating

green fluorescence from the Sox1-GFP transgene present in the

mES cell line, we determined that none of the 17 phagocyte

protocols produced significant amounts of neuroectoderm, con-

firming that stem cell differentiation was likely directed as opposed

to stochastic. Interestingly, directed differentiation was even more

efficient using a microcarrier bead (FACTIII) made of a different

material, indicating that the protocols are adaptable to other

culture systems and may be further optimised by altering factors

such as cell substrate (Fig.S7). Consistent with our expectation that

the protocols that generated multiple hits were likely the most

productive, these performed best in validation experiments using

either bead type.

We then tested 12 protocols that did not return hits, for the

ability to generate phagocytes or neuroectoderm (two of which are

shown in Fig 1i): five protocols were selected arbitrarily and seven

on the basis that they comprised media that rarely produced hits.

None generated appreciable amounts of either cell lineage,

confirming that only specific combinations of media could

efficiently direct terminal differentiation of mES cells.

We also sorted 395 green fluorescent beads (i.e. bearing Sox1-

GFP-positive cells) from the CombiCult screen (Fig 1c (ii) – Gate

3), of which 106 were submitted to tag analysis, revealing 87

differentiation protocols (Data S2 and Fig.S6). As might be

expected, there was little, if any, similarity between protocols that

produced phagocytes and those that produced Sox1-positive

neuroectoderm – demonstrating that different combinations of

media are required to direct differentiation to divergent lineages.

Nevertheless, seven beads with both green and red fluorescence

were isolated from the phagocyte screen (representing seven

different protocols) and by validating a small subset of these we

determined that at least one protocol (2865) reproducibly resulted

in mES cell differentiation into both lineages (Fig. 1i). Such

protocols that efficiently generate mixtures of cell types may be

useful in certain cell biology applications, for example the

construction of more realistic tissue models.

Cluster A protocols direct mES differentiation to a new
lymphoid progenitor cell

Next we investigated the phenotype of the phagocytic cells

produced by Cluster A and B protocols by histology (Giemsa

staining), analysis of cell surface antigens and colony-forming

assays. Remarkably, we discovered that the two protocol clusters

produce very different phenotypes. Cluster B protocols generate

haematopoietic monocytes/macrophages (Fig 2a (i) and (ii)) that

efficiently engulf bacterial particles (Fig 2b (i)), attach loosely to

beads, and express the macrophage marker CD11b (Fig 2d and

Fig S8,). Hematopoietic progenitors generated by these protocols

on day 9 give rise to a variety of myeloid lineages when plated in

MethoCult semisolid media containing SCF, IL3, IL6 and EPO

(Stem Cell Technologies) (Fig 2c). Conventional feeder free

protocols for macrophage differentiation from ES or iPS cells

employ embryoid body formation using pre-selected fetal calf sera

that support hematopoietic differentiation [14,21]. Here we

searched for combinations of cytokines and growth factors that

direct macrophage differentiation in microculture under serum-

and feeder- free conditions. Cluster B protocols feature various

media combinations in the initial stages of differentiation, but later

converge on common media that are well known to promote

hematopoietic development. On day 5 these protocols feature

exposure to BMP2/TGFb1 or PDGF-BB (media 3.7, 3.8 and 3.9)

- high concentrations of BMPs (BMP2 and BMP4) induce

hematopoietic differentiation of ES cells [22], PDGF-BB regulates

differentiation of hemangio-precursor cells in embryoid bodies

[23] while TGFb1 promotes maturation of pro-monocytic cells

into macrophages, stimulates adherence to culture surfaces and

enhances phagocytosis [24]. By day 7, all but two Cluster B

protocols (Fig. 1g) require a cytokine mix containing IL3, IL6 and

TPO at d7 (medium 4.7) in order to sustain and expand myeloid

cells [25,26].

In contrast, Cluster A protocols give rise to large cells with an

ovoid or kidney shaped nucleus (Fig 2a (iii) and (iv)), that adhere

firmly to beads (Fig 2b (ii)) and do not express the macrophage

marker CD11b and the common leucocyte marker CD45 (Fig 2e

i,ii). Instead, these cells express the lymphocyte specific markers

B220, CD5 and CD3e (Fig 2e (iii–vii)) but not CD19 or CD43.

That these cells express B220 but not CD45 is unusual since B220

is an isoform of CD45. It would seem that the specific B220

epitope expressed in our cells is not recognised by the pan-CD45

antibodies used. In contrast to the findings with Cluster B

protocols, progenitor cells generated by Cluster A protocols (on

day 9) fail to generate myeloid colonies in MethoCult supple-

mented with SCF, IL3, IL6 and EPO, but do form colonies in IL7

containing MethoCult (Fig 2f ).

To our knowledge the cell phenotype generated by Cluster A

protocols has not been previously described, but resembles that of

B1a cells; a lymphocyte that co-expresses B220 and CD5 and has

been shown to adhere to plastic and be capable of phagocytosis in

vitro [27–29] (but which has not been shown previously to express

CD3 or lack CD45 expression). B1a progenitors are relatively

abundant in foetus and neonates, however their repopulating

ability declines during adulthood, with adult B1a cells mainly

localized in the peritoneal cavity and to a lesser extent in spleen

[30,31]. Recent reports suggest that B1a progenitors emerge at

different stages of embryonic development and are characterized

by the expression of CD19 and B220 (low) but upon in vitro

culture become CD19/B220 (high) [32,33]. It has also been

suggested that the precursor of the earliest B1a progenitors is yet to

be described, and it remains possible that these cells represent a

vestigial wave of B cell development similar to one seen during

foetal erythropoiesis [34]. Adult B1a cells were recently shown to

give rise to a further lineage, ‘immune response activator’ (IRA)

cells, that is the source of granulocyte-colony stimulating factor

(GM-CSF) and important in protecting against sepsis [16].

Since Cluster A cells do not express markers of mature B1a cells

such as IgM or CD43 [35] we hypothesised that they may be a

type of B-lymphoid progenitor. To test this, we plated cells

generated by Cluster A protocols, either at d9 or d15 of

differentiation, into MethoCult semisolid medium supplemented

with IL7 (Stem Cell Technologies), or onto OP9 feeder layers [36]

to ascertain their ability to develop into more mature cells. In both

systems, cells proliferated and gave rise to colonies of more mature

cells that express B220, CD5 and CD43, although CD19 and IgM
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Figure 3. Analysis of Cluster A protocol derived phagocytes following further maturation in MethoCult or on OP9 cells
supplemented with IL7. (a) Dot plots illustrating flow cytometry analysis of cells obtained after maturation in IL7 supplemented MethoCult for 2
weeks, showing the appearance of cells co-expressing B220/CD43 and B220/CD19; (b) Histogram showing the proportions of different cell
populations present in MethoCult or OP9 derived cultures, measured by flow cytometry analysis. Blue bars represent cells taken off beads on D15
(prior to maturation), red bars represent cell isolated on D15 and cultured for a further 2 weeks on OP9 feeder layers and green bars represent cells
isolated on D15 and cultured in MethoCult for 2 weeks. The experiment was carried out twice and in duplicate the bars show the average percentage
of cells, the error bars show the standard deviation. There is a statistically significant difference between the cells taken from the beads at D15 and
those cultured on MethoCult for 2 weeks for markers CD43 and CD19 *p,0.05.
doi:10.1371/journal.pone.0104301.g003
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expression was only observed at very low levels (Fig 3 a,b) and

CD45 continued to be absent. We further purified the B220+/

CD5+/CD3e+ population by FACS and showed that they are

capable of forming colonies in methylcellulose supplemented with

IL7 (data not shown).

These assays confirm that Cluster A protocols result in mES

differentiation to a lymphoid progenitor cell whose phenotype

resembles but does not perfectly correlate with that of previously

described B1a progenitor cells. In order to determine whether we

had detected a previously undefined, naturally-occurring cell type,

or had generated an in vitro artifact, we sought to prospectively

identify a cell with the same phenotype in vivo. Since differen-

tiation of mES cells is known to generate predominately primitive,

rather than definitive, haemopoietic cell types (e.g. RBCs [37]) and

because a subset of B1a progenitor cells are known to appear early

in development in the yolk sac and para-aortic splanopleural

region (producing a first primitive wave of B1a cell production

[32]) we focused on D9.5-11.5 embryonic, rather than adult

tissues. We were able to identify a minor population of cells in

D9.5, 10.5 and 11.5 embryos that co-express CD5, B220 and

CD3, are CD19 and CD45 negative, can adhere to tissue culture

plastic and phagocytose (Fig. 4, see Fig S9 for all relevant flow

cytometry controls). They are present in the caudal region/AGM,

foetal liver and yolk sac, although interestingly phagocytosis is

much less efficient in cells derived from the yolk sac (Fig. 4b). Here

we show that a majority of these hematopoietic progenitors

(7AAD-Ter119-CD45-CD43(low/-)CD19-CD5+CD3+B220+) from

day 10.5 caudal region also express both CD135 (Flt3) and

CD127 (IL7 receptor) indicating the lymphoid nature of these cells

(Fig S10). The role of these novel lymphoid progenitor cells and

their precise place in the hematopoietic lineage will require further

investigation. The use of our method to produce a previously

unknown progenitor cell illustrates the ability of combinatorial

screening to generate rare intermediates for developmental biology

and fate mapping studies, as well as for future use in small

molecule screening to discover regenerative drugs.

Use of CombiCult to substitute growth factors with small
molecules

An important application of combinatorial screening is to

discover combinations of small molecules that drive stem cell

differentiation. The B1a-like lymphoid progenitor cells described

above arise from mES cells when these are transferred from

standard mES cell expansion medium containing serum (medium

Figure 4. Characterisation of lymphoid progenitor cells in the early embryo. (a) Sorting strategy: Live (7AAD-), Ter119-single cells, were
sorted for CD43(low/-)CD5+CD3+B220+CD45-CD19- expression. (b) Cells sorted from yolk sac (YS) or caudal region/AGM (CP) were plated for pHrodo
assay to assess phagocytosis. Upper panel, bright field; middle panel, fluorescent image of phagocytic cells; lower panel, merged image. Scale bar
corresponds to 20 mm. (c) Lymphoid progenitor cells (Ter119-,CD43(low/-)CD5+CD3+B220+CD45-CD19-) are present on day 9 in the caudal part of the
embryo and later in AGM and foetal liver (FL). The majority of CD43(low/-)CD5+CD3+B220+ are CD45-. The yolk sac (day 9–11) contains a small number
of these CD45- lymphoid progenitor cells. This is a representative analysis of two separate experiments each one performed using embryos from 8
pregnant females (average 6–8 embryos/female).
doi:10.1371/journal.pone.0104301.g004
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1.10) into a fully defined medium previously reported to induce

neurogenesis (medium 2.1), followed by culture in media

containing such growth factors as PDGF-AA, PDGF-BB, FGFa

or bFGF. Both PDGFs and FGFs exert mitogenic and anti-

apoptotic activities through tyrosine kinase receptors, MEK and

PI3K signaling [38,39]. PDGFs and FGFs are also implicated in

proliferation and survival through interaction with other signaling

pathways including Wnt and Shh [40,41]. We therefore attempted

a combinatorial screen to replace these growth factors with small

molecules that target the same signaling pathways or chemicals

shown to promote hematopoietic differentiation and/or prevent

apoptosis. We seeded beads with mES cells in medium 1.10,

transferred these to medium 2.1 for three days (D2-D4), then

performed a combinatorial screen of (30630 = ) 900 cell culture

conditions containing 49 different bioactive compounds applied on

D5 and D7 (Table S2 in File S1), followed by a phagocytosis assay.

We obtained 146 hits of which 98 (67%) were deconvoluted to

determine new, chemically-driven protocols. Remarkably, some

combinations of small molecule mixes (including 5R11, 6R3 and

14R13) were able to generate Cluster A-like phagocytes with an

equal or greater efficiency compared to Cluster A protocols

(Fig 5a). Furthermore, by analysing the representation of individ-

ual chemicals in highly efficient protocols we developed novel

combinations of small molecules that even further increased the

yield of phagocytic cells. The most efficient protocol used two

chemical cocktails: first a mix of four chemicals (SIS3, metformin,

kenpaullone, GPR-40) on D5, followed by a mix of five chemicals

(trans RA, VEGF inducer, DITPA, capsaicin, pifithrin A) on D7,

which, in combination, increased phagocyte cell yield by up to 50-

fold (Fig 5b). The first cocktail contains compounds that activate

Wnt, AMPK and PKB/AKT signaling to stimulate proliferation,

survival and the insulin response, while the second cocktail

includes small molecules that prevent apoptosis and promote

hematopoietic differentiation (i.e. DITPA or VEGF inducer). The

increase in yield may be due to more efficient stimulation of the

biochemical differentiation pathways, the preferential amplifica-

tion of the desired cell type, or selective cell toxicity of

contaminating cells. We further demonstrated that the cell

phenotype generated by the growth factor- and small molecule-

driven protocols was the same (Fig.S11). Our combinatorial

screening method can therefore be used to develop novel protocols

to generate cell types of a given phenotype using small molecules

instead of growth factors, providing considerable advantages in

process cost, yield and reproducibility.

Comparison of the differentiation of human and mouse
ES cells to a dopaminergic neuron fate

The foregoing experiments demonstrate that combinatorial cell

culture can be used to discover protocols that generate diverse

mouse cell types. Next, we asked if the technology can be applied

to hES cells, and to this end devised an experiment to compare the

differentiation of mouse and human ES cells towards a common

endpoint: we performed a pair of more focused screens to compare

known protocols and discover new methods to make dopaminergic

neurons. These are lost in Parkinson’s disease and their

differentiation from ES cells has been studied intensively [3,42–

46]. We devised two 10,000-plex screening matrices comprising

published neurogenic media (some known to promote generic

neural differentiation, others more directed dopaminergic speci-

fication) and new formulations based on subtle variations thereof.

The two matrices shared 4,536 common protocols (compare

matrices in Tables S3 and S4 in File S1). Following combinatorial

cell culture, beads were fixed and stained using fluorescent

antibodies against the intracellular enzyme tyrosine hydroxylase

(TH), a marker of dopaminergic neurons (Fig 6 a (i) and (ii)).

From the mES screen, a total of 622 hits (0.36% of monomeric

beads) were sorted by COPAS, of which 399 (64% of hits) were

deconvoluted. From the hES screen a total of 367 hits (0.13% of

monomeric beads) were processed, from which we obtained

complete tagging data for 279 (76%), Ariadne analysis identified

378 unique protocols for mES cell differentiation and 274 unique

protocols for hES cell differentiation towards a TH+ phenotype

(Fig. 6 b (i) and (ii); Data S3 and S4). Hierarchical clustering of the

mES dataset identified several protocol clusters (Fig S13): two

related clusters (59XX and 50XX) each comprised of 17

and 16 beads respectively and containing the triple hit (5951)

Figure 5. Combinatorial screening discovers small molecule-
driven differentiation protocols for the generation of lym-
phoid progenitor cells. (a) Histogram showing efficiency of the most
frequently occurring protocols derived from the CombiCult screen, as
well as novel combinations of frequently occurring chemicals,
compared to the most efficient cytokine-driven protocol (0185).
Phagocytosis activity was measured by pHrodo assay. Mix A: metformin,
sis3, kenpaullone and GPR-40 agonist on day 5, followed by pifithrin,
capsaicin and DITPA on day 7. Mix B: metformin, sis3, kenpaullone, GPR-
40 agonist on day 5, followed by pifithrin, capsaicin, DITPA, transRA,
and VEGF inducer on day 7. Mix C: metformin, sis3, kenpaullone, GPR-40
agonist, TEA on day 5, followed by pifithrin, capsaicin, DITPA, transRA,
and VEGF inducer on day 7. Each bar represents the average efficiency
from 2 wells (each one containing 4000 beads) and the graph is
representative of 3 separate experiments. There is a statistically
significant difference between the cytokine protocol and the individual
mixes *p,0.05. (b) Representative images of lymphoid progenitor cells
generated on beads and treated with pHrodo particles (red fluores-
cence): (i) cytokine-driven protocol 0185 and (ii) chemically-driven
protocol (Mix B).
doi:10.1371/journal.pone.0104301.g005
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[conditions 9 and 10 in split 2 both contain Sonic hedgehog (SHH)

or its agonist purmorphamine], the cluster (15XX) comprised of

20 beads and the cluster (XX01) also comprised of 20 beads (Data

S3). Analysis of the hES dataset also identified several clusters (Fig

S14): cluster 9XX6 comprised of 12 beads and the related clusters

6XX6 and 8XX6 comprised of 10 beads each (media 6, 8 and 9 in

the first split all contain TGF-b inhibitors) as well as cluster X77X

comprised of 11 beads (condition 7 in both split 2 and 3 is DKK1).

For each cell type we chose around 20 protocols for further study

based on number of hits per protocol and/or clustering analysis.

The protocols were validated using one or more of microculture

(bead), embryoid body (EB) or monolayer culture systems, and a

number were found to generate neurons expressing b-III tubulin

and TH, though with varying efficiency in different cell culture

systems (Fig 6c–d). These protocols were sensitive to cell density,

which might explain the variability in performance across different

systems. hES differentiation using the most efficient and consistent

protocol in monolayer and EB cell culture systems (8976) was

equivalent to the most efficient published method [44] and in both

protocols differentiation is induced by TGF-b inhibitors and

subsequent patterning is achieved using SHH. As in previous

screens, the top protocol returned multiple (two) hits and included

commonly occurring media combinations (the 8XX6 linkage

present in ten hits (Pcluster = 0.06) and the XX76 linkage present in

11 hits (Pcluster = 0.014)).

Of the 4,536 identical protocols tested in the mES and hES cell

screens, eight gave rise to hits in both screens, though none

generated more than one hit per screen, nor was any particularly

effective on either ES cell type when tested. Therefore the finding

that mouse and human ES cells largely favor distinct media

combinations for efficient generation of TH+ neurons implies

differences in the optimal differentiation mechanism. For example,

efficient ectodermal differentiation in both hES and mouse

epiblast (mEPi) cells requires TGFbsignalling inhibitors, whereas

mES cells form ectoderm simply upon LIF withdrawal [47].

Accordingly, we found the most efficient hES cell differentiation

protocols (9736, 8976, 9706),contain the TGFb inhibitors Noggin

and SB431542 in stage 1 of differentiation, followed by SHH/

FGF8b or DKK1 in stage 2, while the most efficient mES

differentiation protocols (5951, 5099, 5929) feature RHB-A

medium (media 5) [48,49] in stage 1 and SHH (or purmorpha-

mine) and FGF8b in stage 2. Protocols featuring TGFb inhibitors

followed by SHH have been previously shown to be a particularly

effective in producing TH+ neurons from hES cells [44],

demonstrating that combinatorial cell culture identifies optimal

media combinations. The results also suggest that DKK1

[conditions 7 in splits 2 and 3] (a repressor of Wnt signalling

that facilitates the activity of SHH [50]) can be used as an efficient

inducer of TH+ cell differentiation, though its effects in mouse

development are known [51] it is seldom used to differentiate hES

cells into DA neurons in vitro.

Conclusion

In this paper we describe a new cell-based, high throughput

combinatorial screening technology and apply it to discover stem

cell differentiation protocols to generate pre-determined cell types,

as well as a novel developmental intermediate cell type. The

protocols we discovered are robust and efficient, result in relatively

high yields of differentiated cells with predetermined characteris-

tics and are readily adapted to various cell culture systems

(microculture, monolayer, aggregates, semisolid media). Our

method is simple and convenient, does not require specialised

equipment and benefits from significant savings in time, labor and

reagent costs.

Combinatorial cell culture is a powerful empirical ‘search

engine’ that can be used to discover completely new methods for

stem cell differentiation, as well as to optimize or further develop

existing protocols, for example by varying the input cell type (e.g.

iPS [52,53] cells, adult stem cells, stable mesenchymal [54,55] or

neuroepithelial [56,57] intermediates, or differentiated cultures

derived by previously determined protocols comprising growth

factors or small molecules [19,58]), the cell culture media

components or their concentration, the timing of media changes

and many other factors important in cell culture. It can be used to

devise protocols that are faster, more productive or cost-effective;

protocols that generate higher quality cells, eliminate undefined

components such as serum or substitute growth factors with small

molecules. In addition, the method can be used to investigate

developmental biology, provide in vitro models for the differen-

tiation of human embryos, study species- or cell line- specific

differences in differentiation, or identify and generate rare or

transient developmental intermediates for further applications.

Here we have applied the technology exclusively to stem cell

differentiation, however we expect it will find numerous other

applications in diverse areas of cell biology where a more dynamic

cell culture approach would better mimic the physiological

environment of cells.

Supporting Information

Figure S1 Schematic diagram illustrating CombiCult
technology.

(TIF)

Figure S2 Tag binding is not biased to any specific
species within a size group. a. Flow cytometry plot of a

mixture of 10 different tag types within a group as a control. b.
Flow cytometry plot of a digested bead tagged with 5 different tag

Figure 6. Mouse and human TH positive neuronal screens. (a) Fluorescence micrographs showing hits bearing (i) mouse and (ii) human TH+
cells amongst negative beads. Scale bars = 100 mm. (b) Schematic diagram illustrating an overlay of all protocols deconvoluted from screens for TH+
neurons generated using (i) mES and (ii) hES cells. Histograms representing each cell culture medium are proportional to the number of hits
generated (written at the bottom of each bar). The opacity of the linkage lines is proportional to the number of hits generated by specific media
combinations - the darkest line in each plot corresponds to (i) 21 and (ii) 12 beads. (c) Microgrographs showing immunofluorescence images of
differentiated ES cells in monolayer cultures. Differentiation protocols shown for mES cells are (i) 5929 and (ii) 4671, stained for TH (red), b-III tubulin
(green) and DAPI (blue). Differentiation protocol shown for hES cells is 8976 (iii and iv) stained for TH (red), b-III tubulin (green) and DAPI (blue);
except in (iv) where FOXA2 is stained blue. Scale bars = 100 mm. Representative photographs from a field of view are shown. Monolayer
differentiations were repeated at least twice for the protocols shown. (d) Efficiency of (i) mES (ii) hES differentiation to TH+ neurons on PTC5000
beads measured by COPAS. Experiments were performed in duplicate wells (containing 4000 beads/well) and the proportion of beads bearing TH+
neurons in each well is plotted separately (light and dark histograms) and ranked according to the average proportion of positive beads. The bead
number(s) and the corresponding deconvoluted protocol are listed below the histogram.
doi:10.1371/journal.pone.0104301.g006
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types of the same size. c. Bar chart showing the average

proportion of each tag type found in a group of 20 random beads.

(TIF)

Figure S3 Controls for cell survival and efficiency of
differentiation for the macrophage screen. a. Cell survival.

(i) Aliquot of pool of beads subjected to pHrodo assay showing one

positive bead in a background of negative beads. (ii). The exact

same field of view as (i) stained with calcein green to show that

most beads have live cells, but are not positive for pHrodo. Scale

bar 100 mm. b. Photomicrographs showing stitched images from a

whole 48 well scan performed with the Nikon Eclipse 2000 with a

4X objective. (i). Beads seeded with mES cells (46C-Sox1-GFP)

and cultured for 2 weeks in negative control media then subjected

to pHrodo assay. (ii). Beads seeded with mES cells (46C-Sox1-

GFP) and cultured for 2 weeks in positive control media then

subjected to pHrodo assay. (iii) Beads seeded with mES cells (46C-

Sox1-GFP) and cultured for 2 weeks in media for protocol (0145)

then subjected to pHrodo assay.

(TIF)

Figure S4 Large particle sorter COPAS, single colour
positive control plots for gating strategy. a. GFP (green)

single colour positive control cells on beads. (i) Dot plot of the GFP

positive cells on beads gated for bead size on single events. (ii) Dot

plot of the population gated on size separated by red vs. green

fluorescence intensity showing the position of the GFP (green)

positive events. b. pHrodo (red) single colour positive control cells

on beads. (i) Dot plot of the pHrodo positive cells beads gated for

bead size on single events. (ii) Dot plot of the population gated on

size separated by red vs. green fluorescence intensity showing the

position of the pHrodo (red) positive events.

(TIF)

Figure S5 Dendrograms illustrating validated protocols
(magenta) and related protocols or media combinations.
(grey). The probability of an event occurring by chance is noted

when probability (P)#0.5. Protocols were scored qualitatively

(2, +, ++, +++) to indicate efficiency of differentiation during

validation experiments relative to other protocols tested in the

same cell culture system. (a)–(c) Dendrograms derived from the

mES/phagocytes screen showing protocols for differentiation to

phagocytes validated in beads, CFCs MethoCult and preB

MethoCult culture systems.

(PDF)

Figure S6 Dendrograms illustrating validated protocols
(magenta) and related protocols or media combinations
(grey). The probability of an event occurring by chance is noted

when probability (P)#0.5. Protocols were scored qualitatively

(2, +, ++, +++) to indicate efficiency of differentiation during

validation experiments relative to other protocols tested in the

same cell culture system. (a)–(c) Dendrograms from mES/

neuroectoderm screen showing protocols for differentiation to

neuroectoderm validated on beads.

(PDF)

Figure S7 Efficiency of mES cell differentiation to
phagocytes on FACTIII beads. Histograms show the
number of red fluorescent colonies per cm2 generated
by each protocol as calculated by image analysis.
Experiments were performed in duplicate wells and results are

plotted in the same order as in Fig. 1h which shows differentiation

on PTC5000 beads. Hit/bead numbers and protocols below the

histograms show whether they were deconvoluted from phagocyte-

(red), neuroectoderm- (green) or phagocyte/neuroectoderm-

(orange) bearing hits, or represent the two negative control

protocols with the highest and lowest efficiency for phagocyte

differentiation (black). Generation of phagocytes on. FACT III

beads is generally more efficient and the ranking of individual

protocols differs, nevertheless protocols that produced double and

triple hits are the most efficient in both systems.

(TIF)

Figure S8 mES cells differentiated with cluster B
protocols, were stained with CD11b and flow sorted
into positive and negative populations. Both populations

were then plated and subjected to a pHrodo phagocytosis assay

(red) and subsequently stained with calcein green. a. Flow plots of

the (i) isotype control and (ii) the sorted populations. b.

Photomicrographs of CD11b positive cells stained for pHrodo

(red) and calcein (green)- 20X magnification scale bars correspond

to 20 mm. c. Photomicrographs of CD11b positive cells stained for

pHrodo (red) and calcein (green)- 40X magnification scale bars

correspond to 20 mm.

(TIF)

Figure S9 Gating strategy and isotype controls for
Ter119-single cells sorted for CD43(low/-)

CD5+CD3+B220+CD45-CD19- expression.

(TIF)

Figure S10 Characterisation of early B1 cells in day 10
embryo caudal part for expression of Flt3 (CD135) and
IL7Ra (CD127). Majority of live B1a cells (7AAD-Ter119-

CD45-CD43-CD19-CD5+CD3+B220+) express Flt3 and IL7ra.

(TIF)

Figure S11 Phagocyte maturation in OP9 and Methocult
after differentiation using cluster A protocols with
chemical substitution. a. Dot plots illustrating flow cytometry

analysis of cells obtained after maturation in IL7 supplemented

Methocult for 2 weeks, showing the appearance of cells co-

expressing B220/CD43 and B220/CD19. b. Bar chart showing

the proportions of different cell populations present in Methocult

or OP9 derived cultures, measured by flow cytometry analysis.

Blue bars represent cells taken off the beads at day 15 (prior to

maturation), red bars represent cells isolated at D15 and cultured

for a further 2 weeks on OP9 feeder layers and green bars

represent cells cultured in Methocult for 2 weeks. Error bars depict

the standard deviation of 3 biological repeats. * There is a

statistically significant difference between the D15 cells and those

cultured in Methocult for 2 weeks.

(TIF)

Figure S12 Schematic diagram illustrating design of the
tyrosine hydroxylase (TH) neuron CombiCult screen.
Ten different cell culture media were tested in each of 4 stages of

differentiation, by split-pool passaging, cells seeded onto beads

sample differentiation media spiked with tags on days D1, D7,

D14 and D21. On day 28 beads were assayed to identify those

bearing tyrosine hydroxylase (TH) positive cells. A total of 300,000

beads were used in the experiment to test 10,000 protocols so that

on average each protocol is sampled by 30 beads.

(TIF)

Figure S13 Dendrograms illustrating validated proto-
cols (magenta) and related protocols or media combi-
nations. (grey) for the mES TH screen. The probability of an

event occurring by chance is noted when P#0.5. Protocols were

scored qualitatively (2, +, ++, +++) to indicate efficiency of

differentiation during validation experiments relative to other

protocols tested in the same cell culture system. (a)–(d)
Dendrograms from Experiment 3 (mES/TH+) showing protocols
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for differentiation to TH+ neurons validated using bead,

monolayer culture and EB culture systems.

(PDF)

Figure S14 Dendrograms illustrating validated proto-
cols (magenta) and related protocols or media combi-
nations (grey) for the hES TH screen. The probability of an

event occurring by chance is noted when P#0.5. Protocols were

scored qualitatively (2, +, ++, +++) to indicate efficiency of

differentiation during validation experiments relative to other

protocols tested in the same cell culture system. (a)–(d)
Dendrograms from Experiment 4 (hES/TH+) showing protocols

for differentiation to TH+ neurons validated using bead and

monolayer culture systems.

(PDF)

File S1 Tables S1–S4. Table S1. List of components for media

used in experiments 1 and 2: Screen for hematopoietic phagocytes

and neural precursors. Table S2. List of components for media

used in experiment 3: Chemical screen for hematopoietic

phagocytes. Table S3. List of components for media used in

experiment 4: Screen for TH positive neurons from mES cells.

Table S4. List of components for media used in experiment 5:

Screen for TH positive neurons from hES cells. List of references

from which media recipes were derived.

(PDF)

Data S1 Ariadne report for CombiCult screen 1:
hematopoietic phagocytes from mES cells.
(PDF)

Data S2 Ariadne report for CombiCult screen 2:
neuroectodermal precursors from mES cells.

(PDF)

Data S3 Ariadne report for CombiCult screen 3: TH
positive neurons from mES cells.

(PDF)

Data S4 Ariadne report for CombiCult screen 4: TH
positive neurons from hES cells.

(PDF)

Movie S1 This movie is an animation explaining
CombiCult technology. (Quicktime).

(MOV)
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58. De Peppo GM, Svensson S, Lennerås M, Synnergren J, Stenberg J, et al. (2010)

Human embryonic mesodermal progenitors highly resemble human mesenchy-
mal stem cells and display high potential for tissue engineering applications.

Tissue Eng Part A 16: 2161–2182.

Directed Differentiation of Embryonic Stem Cells

PLOS ONE | www.plosone.org 15 September 2014 | Volume 9 | Issue 9 | e104301


