220 research outputs found

    The inflammasome in chronic complications of diabetes and related metabolic disorders

    Get PDF
    Diabetes mellitus (DM) ranks seventh as a cause of death worldwide. Chronic complications, including cardiovascular, renal, and eye disease, as well as DM-associated non-alcoholic fatty liver disease (NAFLD) account for most of the morbidity and premature mortality in DM. Despite continuous improvements in the management of late complications of DM, significant gaps remain. Therefore, searching for additional strategies to prevent these serious DM-related conditions is of the utmost importance. DM is characterized by a state of low-grade chronic inflammation, which is critical in the progression of complications. Recent clinical trials indicate that targeting the prototypic pro-inflammatory cytokine interleukin-1ÎČ (IL-1 ÎČ) improves the outcomes of cardiovascular disease, which is the first cause of death in DM patients. Together with IL-18, IL-1ÎČ is processed and secreted by the inflammasomes, a class of multiprotein complexes that coordinate inflammatory responses. Several DM-related metabolic factors, including reactive oxygen species, glyco/lipoxidation end products, and cholesterol crystals, have been involved in the pathogenesis of diabetic kidney disease, and diabetic retinopathy, and in the promoting effect of DM on the onset and progression of atherosclerosis and NAFLD. These metabolic factors are also well-established danger signals capable of regulating inflammasome activity. In addition to presenting the current state of knowledge, this review discusses how the mechanistic understanding of inflammasome regulation by metabolic danger signals may hopefully lead to novel therapeutic strategies targeting inflammation for a more effective treatment of diabetic complications

    Sopra- o sovra-? E dopo si raddoppia?

    Get PDF
    Le parole prefissate con sopra- / sovra- suscitano in molti lettori dubbi sulla preferenza da accordare all’una o all’altra forma del prefisso e al loro impiego con o senza raddoppiamento in parole quali: sopralluogo / sovralluogo, soprastante / sovrastante, sopracitato / sopraccitato / sovracitato / sovraccitato, soprannumerario / sovrannumerario, soprascrivere / sovrascrivere; altre domande riguardano l’esistenza o l’ammissibilità di alcune parole, tra cui soprastimare, sovralzo

    Diabetes and pancreatic cancer-a dangerous liaison relying on carbonyl stress

    Get PDF
    Both type 2 (T2DM) and type 1 (T1DM) diabetes mellitus confer an increased risk of pancreatic cancer in humans. The magnitude and temporal trajectory of the risk conferred by the two forms of diabetes are similar, suggesting a common mechanism. Carbonyl stress is a hallmark of hyperglycemia and dyslipidemia, which accompanies T2DM, prediabetes, and obesity. Accumulating evidence demonstrates that diabetes promotes pancreatic ductal adenocarcinoma (PDAC) in experimental models of T2DM, a finding recently confirmed in a T1DM model. The carbonyl stress markers advanced glycation end-products (AGEs), the levels of which are increased in diabetes, were shown to markedly accelerate tumor development in a mouse model of Kras-driven PDAC. Consistently, inhibition of AGE formation by trapping their carbonyl precursors (i.e., reactive carbonyl species, RCS) prevented the PDAC-promoting effect of diabetes. Considering the growing attention on carbonyl stress in the onset and progression of several cancers, including breast, lung and colorectal cancer, this review discusses the mechanisms by which glucose and lipid imbalances induce a status of carbonyl stress, the oncogenic pathways activated by AGEs and their precursors RCS, and the potential use of carbonyl-scavenging agents and AGE inhibitors in PDAC prevention and treatment, particularly in high-risk diabetic individuals

    Diabetic complications and oxidative stress: A 20‐year voyage back in time and back to the future

    Get PDF
    Twenty years have passed since Brownlee and colleagues proposed a single unifying mechanism for diabetic complications, introducing a turning point in this field of research. For the first time, reactive oxygen species (ROS) were identified as the causal link between hyperglycemia and four seemingly independent pathways that are involved in the pathogenesis of diabetes-associated vascular disease. Before and after this milestone in diabetes research, hundreds of articles describe a role for ROS, but the failure of clinical trials to demonstrate antioxidant benefits and some recent experimental studies showing that ROS are dispensable for the pathogenesis of diabetic complications call for time to reflect. This twenty‐year journey focuses on the most relevant literature regarding the main sources of ROS generation in diabetes and their role in the pathogenesis of cell dysfunction and diabetic complications. To identify future research directions, this review discusses the evidence in favor and against oxidative stress as an initial event in the cellular biochemical abnormalities induced by hyperglycemia. It also explores possible alternative mechanisms, including carbonyl stress and the Warburg effect, linking glucose and lipid excess, mitochondrial dysfunction, and the activation of alternative pathways of glucose metabolism leading to vascular cell injury and inflammation

    The galectin-3/RAGE dyad modulates vascular osteogenesis in atherosclerosis

    Get PDF
    Vascular calcification correlates with inflammation and plaque instability in a dual manner, depending on the spotty/granular (micro) or sheet-like/lamellated (macro) pattern of calcification. Modified lipoproteins trigger both inflammation and calcification via receptors for advanced lipoxidation/glycation endproducts (ALEs/AGEs). This study compared the roles of galectin-3 and receptor for AGEs (RAGE), two ALEs/AGEs-receptors with diverging effects on inflammation and bone metabolism, in the process of vascular calcification. We evaluated galectin-3 and RAGE expression/localization in 62 human carotid plaques and its relation to calcification pattern, plaque phenotype, and markers of inflammation and vascular osteogenesis; and the effect of galectin-3 ablation and/or exposure to an ALE/AGE on vascular smooth muscle cell (VSMC) osteogenic differentiation. While RAGE co-localized with inflammatory cells in unstable regions with microcalcification, galectin-3 was expressed also by VSMCs, especially in macrocalcified areas, where it co-localized with alkaline phosphatase. Expression of galectin-3 and osteogenic markers was higher in macrocalcified plaques, whereas the opposite occurred for RAGE and inflammatory markers. Galectin-3-deficient VSMCs exhibited defective osteogenic differentiation, as shown by altered expression of osteogenic transcription factors and proteins, blunted activation of pro-osteoblastogenic Wnt/ÎČ-catenin signalling and proliferation, enhanced apoptosis, and disorganized mineralization. These abnormalities were associated with RAGE up-regulation, but were only in part prevented by RAGE silencing, and were partially mimicked or exacerbated by treatment with an AGE/ALE. These data indicate a novel molecular mechanism by which galectin-3 and RAGE modulate in divergent ways, not only inflammation, but also vascular osteogenesis, by modulating Wnt/ÎČ-catenin signalling, and independently of ALEs/AGEs

    What does touch tell us about emotions in touchscreen-based gameplay?

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 ACM. It is posted here by permission of ACM for your personal use. Not for redistribution.Nowadays, more and more people play games on touch-screen mobile phones. This phenomenon raises a very interesting question: does touch behaviour reflect the player’s emotional state? If possible, this would not only be a valuable evaluation indicator for game designers, but also for real-time personalization of the game experience. Psychology studies on acted touch behaviour show the existence of discriminative affective profiles. In this paper, finger-stroke features during gameplay on an iPod were extracted and their discriminative power analysed. Based on touch-behaviour, machine learning algorithms were used to build systems for automatically discriminating between four emotional states (Excited, Relaxed, Frustrated, Bored), two levels of arousal and two levels of valence. The results were very interesting reaching between 69% and 77% of correct discrimination between the four emotional states. Higher results (~89%) were obtained for discriminating between two levels of arousal and two levels of valence

    Diabetes promotes invasive pancreatic cancer by increasing systemic and tumour carbonyl stress in Kras G12D/+mice

    Get PDF
    Background: Type 1 and 2 diabetes confer an increased risk of pancreatic cancer (PaC) of similar magnitude, suggesting a common mechanism. The recent finding that PaC incidence increases linearly with increasing fasting glucose levels supports a central role for hyperglycaemia, which is known to cause carbonyl stress and advanced glycation end-product (AGE) accumulation through increased glycolytic activity and non-enzymatic reactions. This study investigated the impact of hyperglycaemia on invasive tumour development and the underlying mechanisms involved. Methods: Pdx1-Cre;LSL-Kras G12D/+ mice were interbred with mitosis luciferase reporter mice, rendered diabetic with streptozotocin and treated or not with carnosinol (FL-926-16), a selective scavenger of reactive carbonyl species (RCS) and, as such, an inhibitor of AGE formation. Mice were monitored for tumour development by in vivo bioluminescence imaging. At the end of the study, pancreatic tissue was collected for histology/immunohistochemistry and molecular analyses. Mechanistic studies were performed in pancreatic ductal adenocarcinoma cell lines challenged with high glucose, glycolysis- and glycoxidation-derived RCS, their protein adducts AGEs and sera from diabetic patients. Results: Cumulative incidence of invasive PaC at 22 weeks of age was 75% in untreated diabetic vs 25% in FL-926-16-gtreated diabetic and 8.3% in non-diabetic mice. FL-926-16 treatment suppressed systemic and pancreatic carbonyl stress, extracellular signal-regulated kinases (ERK) 1/2 activation, and nuclear translocation of Yes-associated protein (YAP) in pancreas. In vitro, RCS scavenging and AGE elimination completely inhibited cell proliferation stimulated by high glucose, and YAP proved essential in mediating the effects of both glucose-derived RCS and their protein adducts AGEs. However, RCS and AGEs induced YAP activity through distinct pathways, causing reduction of Large Tumour Suppressor Kinase 1 and activation of the Epidermal Growth Factor Receptor/ERK signalling pathway, respectively. Conclusions: An RCS scavenger and AGE inhibitor prevented the accelerating effect of diabetes on PainINs progression to invasive PaC, showing that hyperglycaemia promotes PaC mainly through increased carbonyl stress. In vitro experiments demonstrated that both circulating RCS/AGEs and tumour cell-derived carbonyl stress generated by excess glucose metabolism induce proliferation by YAP activation, hence providing a molecular mechanism underlying the link between diabetes and PaC (and cancer in general)

    Galectin-3 gene deletion results in defective adipose tissue maturation and impaired insulin sensitivity and glucose homeostasis

    Get PDF
    Adiposopathy is a pathological adipose tissue (AT) response to overfeeding characterized by reduced AT expandability due to impaired adipogenesis, which favors inflammation, insulin resistance (IR), and abnormal glucose regulation. However, it is unclear whether defective adipogenesis causes metabolic derangement also independently of an increased demand for fat storage. As galectin-3 has been implicated in both adipocyte differentiation and glucose homeostasis, we tested this hypothesis in galectin-3 knockout (Lgal3 12/ 12) mice fed a standard chow. In vitro, Lgal3 12/ 12 adipocyte precursors showed impaired terminal differentiation (maturation). Two-month-old Lgal3 12/ 12 mice showed impaired AT maturation, with reduced adipocyte size and expression of adipogenic genes, but unchanged fat mass and no sign of adipocyte degeneration/death or ectopic fat accumulation. AT immaturity was associated with AT and whole-body inflammation and IR, glucose intolerance, and hyperglycemia. Five-month-old Lgal3 12/ 12 mice exhibited a more mature AT phenotype, with no difference in insulin sensitivity and expression of inflammatory cytokines versus WT animals, though abnormal glucose homeostasis persisted and was associated with reduced \u3b2-cell function. These data show that adipogenesis capacity per se affects AT function, insulin sensitivity, and glucose homeostasis independently of increased fat intake, accumulation and redistribution, thus uncovering a direct link between defective adipogenesis, IR and susceptibility to diabetes
    • 

    corecore