29 research outputs found

    Microstructural MRI basis of the cognitive functions in patients with Spinocerebellar ataxia type 2

    Get PDF
    Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease involving the cerebellum. The particular atrophy pattern results in some typical clinical features mainly including motor deficits. In addition, the presence of cognitive impairments, involving language, visuospatial and executive functions, has been also shown in SCA2 patients and it is now widely accepted as a feature of the disease. The aim of the study is to investigate the microstructural patterns and the anatomo-functional substrate that could account for the cognitive symptomatology observed in SCA2 patients. In the present study, diffusion tensor imaging (DTI) based-tractography was performed to map the main cerebellar white matter (WM) bundles, such as Middle and Superior Cerebellar Peduncles, connecting cerebellum with higher order cerebral regions. Damage-related diffusivity measures were used to determine the pattern of pathological changes of cerebellar WM microstructure in patients affected by SCA2 and correlated with the patients' cognitive scores. Our results provide the first evidence that WM diffusivity is altered in the presence of the cerebellar cortical degeneration associated with SCA2 thus resulting in a cerebello-cerebral dysregulation that may account for the specificity of cognitive symptomatology observed in patients

    Neural substrates of motor and cognitive dysfunctions in SCA2 patients: a network based statistics analysis

    Get PDF
    Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease characterized by a progressive cerebellar syndrome, which can be isolated or associated with extracerebellar signs. It has been shown that patients affected by SCA2 present also cognitive impairments and psychiatric symptoms. The cerebellum is known to modulate cortical activity and to contribute to distinct functional networks related to higher-level functions beyond motor control. It is therefore conceivable that one or more networks, rather than isolated regions, may be dysfunctional in cerebellar degenerative diseases and that an abnormal connectivity within specific cerebello-cortical regions might explain the widespread deficits typically observed in patients. In the present study, the network-based statistics (NBS) approach was used to assess differences in functional connectivity between specific cerebellar and erebral “nodes” in SCA2 patients. Altered inter-nodal connectivity was found between more posterior regions in the cerebellum and regions in the cerebral cortex clearly related to cognition and emotion. Furthermore, more anterior cerebellar lobules showed altered inter-nodal connectivity with motor and somatosensory cerebral regions. The present data suggest that in SCA2 a cerebellar dysfunction affects long-distance cerebral regions and that the clinical symptoms may be specifically related with connectivity changes between motor and non-motor cerebello-cortical nodes

    Wilson Disease Protein ATP7B Utilizes Lysosomal Exocytosis to Maintain Copper Homeostasis

    Get PDF
    SummaryCopper is an essential yet toxic metal and its overload causes Wilson disease, a disorder due to mutations in copper transporter ATP7B. To remove excess copper into the bile, ATP7B traffics toward canalicular area of hepatocytes. However, the trafficking mechanisms of ATP7B remain elusive. Here, we show that, in response to elevated copper, ATP7B moves from the Golgi to lysosomes and imports metal into their lumen. ATP7B enables lysosomes to undergo exocytosis through the interaction with p62 subunit of dynactin that allows lysosome translocation toward the canalicular pole of hepatocytes. Activation of lysosomal exocytosis stimulates copper clearance from the hepatocytes and rescues the most frequent Wilson-disease-causing ATP7B mutant to the appropriate functional site. Our findings indicate that lysosomes serve as an important intermediate in ATP7B trafficking, whereas lysosomal exocytosis operates as an integral process in copper excretion and hence can be targeted for therapeutic approaches to combat Wilson disease

    Structural cerebellar correlates of cognitive functions in spinocerebellar ataxia type 2

    Get PDF
    Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease involving the cerebellum and characterized by a typical motor syndrome. In addition, the presence of cognitive impairment is now widely acknowledged as a feature of SCA2. Given the extensive connections between the cerebellum and associative cerebral areas, it is reasonable to hypothesize that cerebellar neurodegeneration associated with SCA2 may impact on the cerebellar modulation of the cerebral cortex, thus resulting in functional impairment. The aim of the present study was to investigate and quantitatively map the pattern of cerebellar gray matter (GM) atrophy due to SCA2 neurodegeneration and to correlate that with patients' cognitive performances. Cerebellar GM maps were extracted and compared between SCA2 patients (n = 9) and controls (n = 33) by using voxel-based morphometry. Furthermore, the relationship between cerebellar GM atrophy and neuropsychological scores of the patients was assessed. Specific cerebellar GM regions were found to be affected in patients. Additionally, GM loss in cognitive posterior lobules (VI, Crus I, Crus II, VIIB, IX) correlated with visuospatial, verbal memory and executive tasks, while additional correlations with motor anterior (V) and posterior (VIIIA, VIIIB) lobules were found for the tasks engaging motor and planning components. Our results provide evidence that the SCA2 neurodegenerative process affects the cerebellar cortex and that MRI indices of atrophy in different cerebellar subregions may account for the specificity of cognitive symptomatology observed in patients, as result of a cerebello-cerebral dysregulation

    Identification of p38 MAPK and JNK as New Targets for Correction of Wilson Disease-Causing ATP7B Mutants

    Get PDF
    Wilson disease (WD) is an autosomal recessive disorder that is caused by the toxic accumulation of copper (Cu) in the liver. The ATP7B gene, which is mutated in WD, encodes a multitransmembrane domain adenosine triphosphatase that traffics from the trans-Golgi network to the canalicular area of hepatocytes, where it facilitates excretion of excess Cu into the bile. Several ATP7B mutations, including H1069Q and R778L that are two of the most frequent variants, result in protein products, which, although still functional, remain in the endoplasmic reticulum. Thus, they fail to reach Cu excretion sites, resulting in the toxic buildup of Cu in the liver of WD patients. Therefore, correcting the location of these mutants by leading them to the appropriate functional sites in the cell should restore Cu excretion and would be beneficial to help large cohorts of WD patients. However, molecular targets for correction of endoplasmic reticulum-retained ATP7B mutants remain elusive. Here, we show that expression of the most frequent ATP7B mutant, H1069Q, activates p38 and c-Jun N-terminal kinase signaling pathways, which favor the rapid degradation of the mutant. Suppression of these pathways with RNA interference or specific chemical inhibitors results in the substantial rescue of ATP7B(H1069Q) (as well as that of several other WD-causing mutants) from the endoplasmic reticulum to the trans-Golgi network compartment, in recovery of its Cu-dependent trafficking, and in reduction of intracellular Cu levels. Conclusion: Our findings indicate p38 and c-Jun N-terminal kinase as intriguing targets for correction of WD-causing mutants and, hence, as potential candidates, which could be evaluated for the development of novel therapeutic strategies to combat WD

    Basic income and the right to work: a Keynesian approach

    Get PDF
    Among the proposals for radical reform of social policy are basic income, which would pay an unconditional cash benefit to all individuals, and the right to work, which would offer guaranteed employment arranged by the state if necessary. This paper examines the macroeconomic consequences of such reform proposals. It sets up a simple Keynesian income-expenditure model that includes basic income and the right to work as alternative methods of providing social assistance, along with the more traditional approach of paying unemployment benefits. The various schemes are compared and contrasted with regard to their implications for employment, stability, distribution, efficiency and the government budget. Potential benefits of basic income or the right to work are emphasised, despite the political obstacles to implementing them

    A transcriptomic study of Williams-Beuren syndrome associated genes in mouse embryonic stem cells

    No full text
    Williams-Beuren syndrome (WBS) is a relatively rare disease caused by the deletion of 1.5 to 1.8 Mb on chromosome 7 which contains approximately 28 genes. This multisystem disorder is mainly characterized by supravalvular aortic stenosis, mental retardation, and distinctive facial features. We generated mouse embryonic stem (ES) cells clones expressing each of the 4 human WBS genes (WBSCR1, GTF2I, GTF2IRD1 and GTF2IRD2) found in the specific delated region 7q11.23 causative of the WBS. We generated at least three stable clones for each gene with stable integration in the ROSA26 locus of a tetracycline-inducible upstream of the coding sequence of the genet tagged with a 3xFLAG epitope. Three clones for each gene were transcriptionally profiled in inducing versus non-inducing conditions for a total of 24 profiles. This small collection of human WBS-ES cell clones represents a resource to facilitate the study of the function of these genes during differentiation

    Positivity Conditions for Generalised Schwarzschild Space-Times

    No full text
    International audienceWe analyse the impact of positivity conditions on static spherically symmetric deformations of the Schwarzschild space-time. The metric is taken to satisfy, at least asymptotically, the Einstein equation in the presence of a non-trivial stress-energy tensor, on which we impose various physicality conditions. We systematically study and compare the impact of these conditions on the space-time deformations. The universal nature of our findings applies to both classical and quantum metric deformations with and without event horizons. We further discuss minimal realisations of the asymptotic stress energy tensor in terms of physical fields. Finally, we illustrate our results by discussing concrete models of quantum black holes

    IGF-1 as a possible marker of early cognitive impairment: A pilot study

    No full text
    Insulin-like growth factor (IGF)-1 is an important neurotrophic hormone. Disregulation of this hormone has been reported to influence the genesis of cognitive impairment and dementia in the elderly patients. We evaluated IGF-1 serum values and cognitive status in elder subjects. Primary endpoint was finding a possible link between IGF-1 values and MMSE scores, adjusted for age and sex. Elder patients (range 55–71 ys) were followed for up to 4 years (median 3.2 years). Cognitive status was assessed by Mini Mental State Examination (MMSE). A total of 210 subjects were enrolled. Yearly evaluation included routine laboratory tests, a complete physical examination and cognitive state measurement. At baseline evaluation, patients were divided into three groups: Healthy (MMSE > 26), Borderline (MMSE 24–26), Cognitive impairment (MMSE < 24). We used multiple linear regression with a scatter plot to compare IGF-1 and MMSE, adjusted for diagnosis of hypertension. Then, we checked the ROC curve, analyzing the AUC of our marker. At the baseline evaluation, no differences were found in the three groups for therapy and other diseases. Borderline subjects differed from other two groups, with a significant elevation of IGF-1 values (P < 0.05). The AUC curve of the yearly evaluation showed significant values (0.86 ± 0,02). This trial showed IGF-1 elevation in borderline subjects. Further studies will be performed in order to demonstrate the efficacy and sensibility of this serum marker
    corecore