167 research outputs found
A systems approach to identifying correlated gene targets for the loss of colour pigmentation in plants
<p>Abstract</p> <p>Background</p> <p>The numerous diverse metabolic pathways by which plant compounds can be produced make it difficult to predict how colour pigmentation is lost for different tissues and plants. This study employs mathematical and <it>in silico </it>methods to identify correlated gene targets for the loss of colour pigmentation in plants from a whole cell perspective based on the full metabolic network of <it>Arabidopsis</it>. This involves extracting a self-contained flavonoid subnetwork from the AraCyc database and calculating feasible metabolic routes or elementary modes (EMs) for it. Those EMs leading to anthocyanin compounds are taken to constitute the anthocyanin biosynthetic pathway (ABP) and their interplay with the rest of the EMs is used to study the minimal cut sets (MCSs), which are different combinations of reactions to block for eliminating colour pigmentation. By relating the reactions to their corresponding genes, the MCSs are used to explore the phenotypic roles of the ABP genes, their relevance to the ABP and the impact their eliminations would have on other processes in the cell.</p> <p>Results</p> <p>Simulation and prediction results of the effect of different MCSs for eliminating colour pigmentation correspond with existing experimental observations. Two examples are: i) two MCSs which require the simultaneous suppression of genes DFR and ANS to eliminate colour pigmentation, correspond to observational results of the same genes being co-regulated for eliminating floral pigmentation in <it>Aquilegia </it>and; ii) the impact of another MCS requiring CHS suppression, corresponds to findings where the suppression of the early gene CHS eliminated nearly all flavonoids but did not affect the production of volatile benzenoids responsible for floral scent.</p> <p>Conclusions</p> <p>From the various MCSs identified for eliminating colour pigmentation, several correlate to existing experimental observations, indicating that different MCSs are suitable for different plants, different cells, and different conditions and could also be related to regulatory genes. Being able to correlate the predictions with experimental results gives credence to the use of these mathematical and <it>in silico </it>analyses methods in the design of experiments. The methods could be used to prioritize target enzymes for different objectives to achieve desired outcomes, especially for less understood pathways.</p
The First Illumina-Based De Novo Transcriptome Sequencing and Analysis of Safflower Flowers
BACKGROUND: The safflower, Carthamus tinctorius L., is a worldwide oil crop, and its flowers, which have a high flavonoid content, are an important medicinal resource against cardiovascular disease in traditional medicine. Because the safflower has a large and complex genome, the development of its genomic resources has been delayed. Second-generation Illumina sequencing is now an efficient route for generating an enormous volume of sequences that can represent a large number of genes and their expression levels. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the genes and pathways that might control flavonoids and other secondary metabolites in the safflower, we used Illumina sequencing to perform a de novo assembly of the safflower tubular flower tissue transcriptome. We obtained a total of 4.69 Gb in clean nucleotides comprising 52,119,104 clean sequencing reads, 195,320 contigs, and 120,778 unigenes. Based on similarity searches with known proteins, we annotated 70,342 of the unigenes (about 58% of the identified unigenes) with cut-off E-values of 10(-5). In total, 21,943 of the safflower unigenes were found to have COG classifications, and BLAST2GO assigned 26,332 of the unigenes to 1,754 GO term annotations. In addition, we assigned 30,203 of the unigenes to 121 KEGG pathways. When we focused on genes identified as contributing to flavonoid biosynthesis and the biosynthesis of unsaturated fatty acids, which are important pathways that control flower and seed quality, respectively, we found that these genes were fairly well conserved in the safflower genome compared to those of other plants. CONCLUSIONS/SIGNIFICANCE: Our study provides abundant genomic data for Carthamus tinctorius L. and offers comprehensive sequence resources for studying the safflower. We believe that these transcriptome datasets will serve as an important public information platform to accelerate studies of the safflower genome, and may help us define the mechanisms of flower tissue-specific and secondary metabolism in this non-model plant
Environmentally induced changes in antioxidant phenolic compounds levels in wild plants
[EN] Different adverse environmental conditions cause oxidative stress in plants by generation of reactive
oxygen species (ROS). Accordingly, a general response to abiotic stress is the activation of enzymatic and non-enzymatic antioxidant systems. Many phenolic compounds, especially flavonoids, are known antioxidants and efficient ROS scavengers in vitro, but their exact role in plant stress responses in nature is still under debate. The aim of our work is to investigate this role by correlating the degree of
environmental stress with phenolic and flavonoid levels in stress-tolerant plants. Total phenolic and antioxidant flavonoid contents were determined in 19 wild species. Meteorological data and plant and soil samples were collected in three successive seasons from four Mediterranean ecosystems: salt marsh, dune, semiarid and gypsum habitats. Changes in phenolic and flavonoid levels were correlated
with the environmental conditions of the plants and were found to depend on both the taxonomy and ecology of the investigated species. Despite species-specific differences, principal component analyses of the results established a positive correlation between plant phenolics and several environmental parameters, such as altitude, and those related to water stress: temperature, evapotranspiration, and soil water deficit. The correlation with salt stress was, however, very weak. The joint analysis of all the species showed the lowest phenolic and flavonoid levels in the halophytes from the salt marsh. This finding supports previous data indicating that the halophytes analysed here do not undergo oxidative stress in their natural habitat and therefore do not need to activate antioxidant systems as a defence against salinity.This work has been funded by the Spanish Ministry of Science and Innovation (Project CGL2008-00438/BOS), with contribution from the European Regional Development Fund. Thanks to Dr. Rafael Herrera for critical reading of the manuscript.Bautista, I.; Boscaiu, M.; Lidón, A.; Llinares Palacios, JV.; Lull, C.; Donat-Torres, MP.; Mayoral García-Berlanga, O.... (2016). Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiologiae Plantarum. 38(1):1-15. https://doi.org/10.1007/s11738-015-2025-2S115381Agati G, Biricolti S, Guidi L, Ferrini F, Fini A, Tattini M (2011) The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. J Plant Physiol 168:204–212Agati G, Brunetti C, Di Ferdinando M, Ferrini F, Pollastri S, Tattini M (2013) Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiol Biochem 72:35–45Albert A, Sareedenchai V, Heller W, Seidlitz HK, Zidorn C (2009) Temperature is the key to altitudinal variation of phenolics in Arnica montana L. cv. ARBO. Oecologia 160:1–8Appel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399Bachereau F, Marigo G, Asta J (1998) Effect of solar radiation (UV and visible) at high altitude on CAM-cycling and phenolic compounds biosynthesis in Sedum album. Physiol Plant 104:203–210Ballizany WL, Hofmann RV, Jahufer MZZ, Barrett BB (2012) Multivariate associations of flavonoid and biomass accumulation in white clover (Trifolium repens) under drought. Funct Plant Biol 39:167–177Bieza K, Lois R (2001) An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiol 126:1105–1115Bilger W, Rolland M, Nybakken L (2007) UV screening in higher plants induced by low temperature in the absence of UV-B radiation. Photochem Photobiol Sci 6:190–195Blumthaler M, Ambach M, Ellinger R (1997) Increase in solar UV radiation with altitude. J Photochem Photobiol B 39:130–134Boscaiu M, Lull C, Llinares J, Vicente O, Boira H (2013) Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. J Plant Ecol 6:177–186Bose J, Rodrigo-Moreno A, Shabala S (2013) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as a negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535Burchard P, Bilger W, Weissenböck G (2000) Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell Environ 23:1373–1380Burriel F, Hernando V (1947) Nuevo método para determinar el fósforo asimilable en los suelos. Anales de Edafología Fisiología Vegetal 9:611–622Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20Coman C, Rugina OD, Socaciu C (2012) Plants and natural compounds with antidiabetic action. Not Bot Horti Agrobo 40:314–325Di Ferdinando M, Brunetti C, Fini A, Tattini M (2012) Flavonoids as antioxidants in plants under abiotic stresses. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York, pp 159–179Di Ferdinando M, Brunetti C, Agati G, Tattini M (2014) Multiple functions of polyphenols in plants inhabiting unfavourable Mediterranean areas. Environ Exper Bot 103:107–116FAO (1990) Management of gypsiferous soils. FAO Soils Bull, p 62Fini A, Brunetti C, Di Ferdinando M, Ferrini F, Tattini M (2011) Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal Behav 6:709–711Gil R, Lull C, Boscaiu M, Bautista I, Lidón A, Vicente O (2011) Soluble carbohydrates as osmolytes in several halophytes from a Mediterranean salt marsh. Not Bot Horti Agrobo 39:9–17Gil R, Bautista I, Boscaiu M, Lidón A, Wankhade S, Sánchez H, Llinares J, Vicente O (2014) Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB Plants 6: plu049Gould KS, Lister C (2006) Flavonoid function in plants. In: Andersen ØM, Marham KR (eds) Flavonoids, chemistry, biochemistry and application. CRC Press, Boca Raton, pp 397–442Hajimahmoodi M, Moghaddam G, Ranjbar AM, Khazani H, Sadeghi N, Oveisi MR, Jannat B (2013) Total phenolic, flavonoids, tannin content and antioxidant power of some Iranian pomegranate flower cultivars (Punica granatum L.). Am J Plant Sci 4:1815–1820Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322Harborne JB, Williams C (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504Hernández I, Alegre L, Munné-Bosch S (2004) Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol 24:1303–1311Hernández I, Alegre L, Van Breusegem F, Munné-Bosch S (2008) How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 14:125–132Iwashina T (2000) The structure and distribution of the flavonoids in plants. J Plant Res 113:287–299Jaakola L, Määttä-Riihinen K, Kärenlampi S, Hohtola A (2004) Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves. Planta 218:721–728Jenkins GI (2009) Signal transduction in responses to UB-B radiation. Annu Rev Plant Biol 60:407–431Jenkins GI, Long JC, Wade HK, Shenton MR, Bibikova TN (2001) UV and blue light signalling: pathways regulating chalcone synthase gene expression in Arabidopsis. New Phytol 151:121–131Kaulen H, Schell J, Kreuzaler F (1986) Light-induced expression of the chimeric chalcone synthase-NPTII gene in tobacco cells. EMBO J 5:1–8Kim DO, Jeong SW, Lee CY (2003) Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem 81:321–326Kirakosyan A, Seymour E, Kaufman PB, Warber S, Bolling S, Chang SC (2003) Antioxidant capacity of polyphenolic extracts from leaves of Crataegus laevigata and Crataegus monogyna (Hawthorn) subjected to drought and cold stress. J Agr Food Chem 51:3973–3976Knudssen D, Peterson GA, Pratt PF (1982) Lithium, Sodium and Potassium. In: Page AL et al (eds) Methods of soil analysis, chemical and microbiological properties. American Society of Agronomy, Madison, pp 225–246Koes RE, Spelt CE, Mol JNM (1989) The chalcone synthase multigene family of Petunia hybrida (V30): differential, light-regulated expression during flower development and UV light induction. Plant Mol Biol 12:213–225Körner C (1999) Alpine plant life. Functional plant ecology of high mountain ecosytems, BerlinKumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:1–16Kuo S (1996) Phosphorus. In: Spark D (ed) Methods of soil analysis: chemical methods, part 3. American Society of Agronomy, Madison, pp 869–919Lavola A (1998) Accumulation of flavonoids and related compounds in birch induced by UV-B irradiance. Tree Physiol 18:53–58Li J, Ou-Lee TM, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B radiation. Plant Cell 5:171–179Llinares JV, Bautista I, Donat MP, Lidón A, Lull C, Mayoral O, Wankhade S, Boscaiu M, Vicente O (2015) Responses to environmental stress in plants adapted to Mediterranean gypsum habitats. Not Sci Biol 7:34–44Marinova D, Ribarova F, Atanassova M (2005) Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J Univ Chem Technol Metall 40:255–260Martens H, Naes T (1989) Multivariate calibration. Wiley, New YorkMurai Y, Takemura S, Takeda K, Kitajima K, Iwashina T (2009) Altitudinal variation of UV-absorbing compounds in Plantago asiatica. Biochem Syst Ecol 37:78–384Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, Michael AJ, Tohge T, Yamazaki M, Saito K (2014) Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J 77:367–379Napoli CA, Fahy D, Wang HY, Taylor LP (1999) white anther: a petunia mutant that abolishes pollen flavonoid accumulation, induces male sterility, and is complemented by a chalcone synthase transgene. Plant Physiol 120:615–622Nechita A, Cotea VV, Nechita CB, Pincu RR, Mihai CT, Colibaba CL (2012) Study of cytostatic and cytotoxic activity of several polyphenolic extracts obtained from Vitis vinifera. Not Bot Horti Agrobo 40:216–221Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL et al (eds) Methods of soil analysis, chemical and microbiological properties. Soil Science Society of America, Madison, pp 539–577Nelson RE, Klameth LC, Nettleton WD (1978) Determining soil gypsum content and expressing properties of gypsiferous soils. Soil Sci Soc Am J 42:659–661Nile SH, Khobragade CN (2010) Antioxidant activity and flavonoid derivatives of Plumbago zeylanica. J Nat Prod 3:130–133Park HL, Lee SW, Jung KH, Hahn TR, Cho MH (2013) Transcriptomic analysis of UV-treated rice leaves reveals UV-induced phytoalexin biosynthetic pathways and their regulatory networks in rice. Phytochemistry 96:57–71Pękal A, Pyrzynska K (2014) Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal Method 7:1776–1782Pollastri S, Tattini M (2011) Flavonols: old compounds for old roles. Ann Bot 108:1225–1233Ravishankar D, Rajora AK, Greco F, Osborn HM (2013) Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell B 45:2821–2831Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio Med 20:933–956Rieger G, Müller M, Guttenberger H, Bucar F (2008) Influence of altitudinal variation on the content of phenolic compounds in wild populations of Calluna vulgaris, Sambucus nigra, and Vaccinium myrtillus. J Agric Food Chem 58:9080–9086Rivas-Martínez S, Rivas-Saenz S (1996–2009) Worldwide bioclimatic classification system. Phytosociological Research Center, Spain. http://www.globalbioclimatics.org . Accessed 1 July 2013Rohman A, Riyanto S, Yuniarti N, Saputra WR, Utami R, Mulatsih W (2010) Antioxidant activity, total phenolic, and total flavonoid of extracts and fractions of red fruit (Pandanus conoideus Lam). Int Food Res J 17:97–106Romano B, Pagano E, Montanaro V, Fortunato AL, Milic N, Borrelli F (2013) Novel insights into the pharmacology of flavonoids. Phytother Res 27:1588–1596Rozema J, van de Staaij J, Björn LO, Caldwell MM (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12:22–28Rozema J, Bjorn LO, Bornman JF, Gaberščik A, Häder DP, Trošt T, Germ M, Klisch M, Gröniger A, Sinha RP, Lebert M, He YY, Buffoni-Hall R, de Bakker NVJ, van de Staaij J, Meijkamp BB (2002) The role of UV-B radiation in aquatic and terrestrial ecosystems—an experimental and functional analysis of the evolution of UV-absorbing compounds. Photochem Photobiol B Biol 66:2–12Schulze-Lefert P, Dangl JL, Becker-André M, Hahlbrock K, Schulz W (1989) Inducible in vivo DNA footprints define sequences necessary for UV light activation of the parsley chalcone synthase gene. EMBO J 8:651–656Sena MM, Frighetto RTS, Valarini PJ, Tokeshi H, Poppi RJ (2002) Discrimination of management effects on soil parameters by using principal component analysis: a multivariate analysis case study. Soil Till Res 67:171–181Shulaev V, Oliver DJ (2006) Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research. Plant Physiol 141:367–372Singleton VL, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am J EnolVitic 16:144–158Spitaler R, Winkler A, Lins I, Yanar S, Stuppner H, Zidorn C (2008) Altitudinal variation of phenolic contents in flowering heads of Arnica montana cv. ARBO: a 3-year comparison. J Chem Ecol 34:369–375Stapleton AE, Walbot V (1994) Flavonoids can protect maize DNA from the induction of UV radiation damage. Plant Physiol 105:881–889Takahashi M, Asada K (1988) Superoxide production in aprotic interior of chloroplast thylakoids. Arch Biochem Biophys 267:714–722Tattini M, Gravano E, Pinelli P, Mulinacci N, Romani A (2000) Flavonoids accumulate in leaves and glandular trichomes of Phillyrea latifolia exposed to excess solar radiation. New Phytol 148:69–77Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G (2004) Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol 163:547–561Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol 7:581–591Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390Williams CA, Grayer RJ (2004) Anthocyanins and other flavonoids. Nat Prod Rep 21:539–573Winkel-Shirley B (2002) Biosynthesis of flavonoids and effect of stress. Curr Opin Plant Biol 5:218–223Ylstra B, Touraev A, Benito Moreno RM, Stöger E, van Tunen AA, Vicente O, Mol JNM, Heberle-Bors E (1992) Flavonols stimulate development, germination and tube growth of tobacco pollen. Plant Physiol 100:902–907Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559Zidorn C, Schubert B, Stuppner H (2005) Altitudinal differences in the contents of phenolics in flowering heads of three members of the tribe Lactuceae (Asteraceae) occurring as introduced species in New Zealand. Biochem Syst Ecol 33:855–87
Ethnobotany in the Nepal Himalaya
<p>Abstract</p> <p>Background</p> <p>Indigenous knowledge has become recognized worldwide not only because of its intrinsic value but also because it has a potential instrumental value to science and conservation. In Nepal, the indigenous knowledge of useful and medicinal plants has roots in the remote past.</p> <p>Methods</p> <p>The present study reviews the indigenous knowledge and use of plant resources of the Nepal Himalayas along the altitudinal and longitudinal gradient. A total of 264 studies focusing on ethnobotany, ethnomedicine and diversity of medicinal and aromatic plants, carried out between 1979 and 2006 were consulted for the present analysis. In order to cross check and verify the data, seven districts of west Nepal were visited in four field campaigns.</p> <p>Results</p> <p>In contrast to an average of 21–28% ethnobotanically/ethnomedicinally important plants reported for Nepal, the present study found that up to about 55% of the flora of the study region had medicinal value. This indicates a vast amount of undocumented knowledge about important plant species that needs to be explored and documented. The richness of medicinal plants decreased with increasing altitude but the percentage of plants used as medicine steadily increased with increasing altitude. This was due to preferences given to herbal remedies in high altitude areas and a combination of having no alternative choices, poverty and trust in the effectiveness of folklore herbal remedies.</p> <p>Conclusion</p> <p>Indigenous knowledge systems are culturally valued and scientifically important. Strengthening the wise use and conservation of indigenous knowledge of useful plants may benefit and improve the living standard of poor people.</p
- …