244 research outputs found

    Plasmon-enhanced molecular fluorescence from an organic film in a tunnel junction

    Get PDF
    Scanning tunneling microscope (STM)-excited molecular fluorescence from H2TBP porphyrin (H2TBPP) thin films on Au (111), Ag, highly oriented pyrolytic graphite (HOPG), and indium tin oxide (ITO) surfaces has been investigated in air. Molecular fluorescence was observed from the H2TBPP films on Au and Ag, but it was extremely weak or undetectable from films on HOPG and ITO. The maximum intensity of molecular fluorescence from H2TBPP/Ag is at least 100 times stronger than that from H2TBPP/HOPG. Strong enhancement of molecular excitation by substrate surface plasmons is suggested for the STM-excited molecular fluorescence from H2TBPP only on the noble metal substrates

    Plasmon-enhanced molecular fluorescence from an organic film in a tunnel junction

    Get PDF
    Scanning tunneling microscope (STM)-excited molecular fluorescence from H2TBP porphyrin (H2TBPP) thin films on Au (111), Ag, highly oriented pyrolytic graphite (HOPG), and indium tin oxide (ITO) surfaces has been investigated in air. Molecular fluorescence was observed from the H2TBPP films on Au and Ag, but it was extremely weak or undetectable from films on HOPG and ITO. The maximum intensity of molecular fluorescence from H2TBPP/Ag is at least 100 times stronger than that from H2TBPP/HOPG. Strong enhancement of molecular excitation by substrate surface plasmons is suggested for the STM-excited molecular fluorescence from H2TBPP only on the noble metal substrates

    First Nonperturbative Test of a Relativistic Heavy Quark Action in Quenched Lattice QCD

    Get PDF
    We perform a numerical test of a relativistic heavy quark(RHQ) action, recently proposed by Tsukuba group, in quenched lattice QCD at a0.1a\simeq 0.1 fm. With the use of the improvement parameters previously determined at one-loop level for the RHQ action, we investigate a restoration of rotational symmetry for heavy-heavy and heavy-light meson systems around the charm quark mass. We focused on two quantities, the meson dispersion relation and the pseudo-scalar meson decay constants. It is shown that the RHQ action significantly reduces the discretization errors due to the charm quark mass. We also calculate the S-state hyperfine splittings for the charmonium and charmed-strange mesons and the DsD_s meson decay constant. The remaining discretization errors in the physical quantities are discussed.Comment: 21 pages, 16 figures. A reference and a comment added, a major modification in appendix, several minor changes in the abstract and the main text. Errors in affiliation are corrected. Version appeared in JHE

    The Lattice Λ\Lambda Parameter in Domain Wall QCD

    Full text link
    We evaluate the ratio of the scale parameter Λ\Lambda in domain wall QCD to the one in the continuum theory at one loop level incorporating the effect of massless quarks. We show that the Pauli-Villars regulator is required to subtract the unphysical massive fermion modes which emerge in the fermion loop contributions to the gluon self energy. Detailed results are presented as a function of the domain wall height MM.Comment: 16 pages, 1 figure as eps-file, some references adde

    Regulation of Epithelial Sodium Transport via Epithelial Na+ Channel

    Get PDF
    Renal epithelial Na+ transport plays an important role in homeostasis of our body fluid content and blood pressure. Further, the Na+ transport in alveolar epithelial cells essentially controls the amount of alveolar fluid that should be kept at an appropriate level for normal gas exchange. The epithelial Na+ transport is generally mediated through two steps: (1) the entry step of Na+ via epithelial Na+ channel (ENaC) at the apical membrane and (2) the extrusion step of Na+ via the Na+, K+-ATPase at the basolateral membrane. In general, the Na+ entry via ENaC is the rate-limiting step. Therefore, the regulation of ENaC plays an essential role in control of blood pressure and normal gas exchange. In this paper, we discuss two major factors in ENaC regulation: (1) activity of individual ENaC and (2) number of ENaC located at the apical membrane

    BioHackathon series in 2011 and 2012: penetration of ontology and linked data in life science domains

    Get PDF
    The application of semantic technologies to the integration of biological data and the interoperability of bioinformatics analysis and visualization tools has been the common theme of a series of annual BioHackathons hosted in Japan for the past five years. Here we provide a review of the activities and outcomes from the BioHackathons held in 2011 in Kyoto and 2012 in Toyama. In order to efficiently implement semantic technologies in the life sciences, participants formed various sub-groups and worked on the following topics: Resource Description Framework (RDF) models for specific domains, text mining of the literature, ontology development, essential metadata for biological databases, platforms to enable efficient Semantic Web technology development and interoperability, and the development of applications for Semantic Web data. In this review, we briefly introduce the themes covered by these sub-groups. The observations made, conclusions drawn, and software development projects that emerged from these activities are discussed

    Erratum: The Belle II Physics Book (Progress of Theoretical and Experimental Physics (2019) 2019 (123C01) DOI: 10.1093/ptep/ptz106)

    Get PDF

    Measurements of the branching fractions for BKγB \to K^{*}\gamma decays at Belle II

    Get PDF
    This paper reports a study of BKγB \to K^{*}\gamma decays using 62.8±0.662.8\pm 0.6 fb1^{-1} of data collected during 2019--2020 by the Belle II experiment at the SuperKEKB e+ee^{+}e^{-} asymmetric-energy collider, corresponding to (68.2±0.8)×106(68.2 \pm 0.8) \times 10^6 BBB\overline{B} events. We find 454±28454 \pm 28, 50±1050 \pm 10, 169±18169 \pm 18, and 160±17160 \pm 17 signal events in the decay modes B0K0[K+π]γB^{0} \to K^{*0}[K^{+}\pi^{-}]\gamma, B0K0[KS0π0]γB^{0} \to K^{*0}[K^0_{\rm S}\pi^{0}]\gamma, B+K+[K+π0]γB^{+} \to K^{*+}[K^{+}\pi^{0}]\gamma, and B+K+[K+π0]γB^{+} \to K^{*+}[K^{+}\pi^{0}]\gamma, respectively. The uncertainties quoted for the signal yield are statistical only. We report the branching fractions of these decays: B[B0K0[K+π]γ]=(4.5±0.3±0.2)×105,\mathcal{B} [B^{0} \to K^{*0}[K^{+}\pi^{-}]\gamma] = (4.5 \pm 0.3 \pm 0.2) \times 10^{-5}, B[B0K0[KS0π0]γ]=(4.4±0.9±0.6)×105,\mathcal{B} [B^{0} \to K^{*0}[K^0_{\rm S}\pi^{0}]\gamma] = (4.4 \pm 0.9 \pm 0.6) \times 10^{-5}, B[B+K+[K+π0]γ]=(5.0±0.5±0.4)×105, and\mathcal{B} [B^{+} \to K^{*+}[K^{+}\pi^{0}]\gamma] = (5.0 \pm 0.5 \pm 0.4)\times 10^{-5},\text{ and} B[B+K+[KS0π+]γ]=(5.4±0.6±0.4)×105,\mathcal{B} [B^{+} \to K^{*+}[K^0_{\rm S}\pi^{+}]\gamma] = (5.4 \pm 0.6 \pm 0.4) \times 10^{-5}, where the first uncertainty is statistical, and the second is systematic. The results are consistent with world-average values
    corecore