44 research outputs found

    Electric current and heat production by a neutral carrier : an effect of the axion

    Get PDF
    A general axion-electrodynamic formalism is presented on the phenomenological level when the environment is dielectric (permittivity and permeability assumed to be constants). Thereafter, a strong and uniform magnetic field is considered in the z direction, the field region having the form of a long material cylinder (which corresponds to the haloscope setup). If the axion amplitude depends on time only, the axions give rise to an oscillating electric current in the z direction. We estimate the magnitudes of the azimuthal magnetic fields and the accompanying Joule heating in the cylinder, taking the cylinder to have ordinary dissipative properties. We evaluate and calculate the electric current and the heat production separately, without using the effective approximation, both when there is a strong magnetic field and when there is a strong electric one, showing that with the magnetic field there is a heat production, while with the electric field there is not. The heat generation that we consider, is a nontrivial effect as it is generated by the electrically neutral axions, and has obvious consequences for axion thermodynamics. The heat production can moreover have an additional advantage, since the effect is accumulative and so grows with time. The boundary conditions (in a classical sense) are explained and the use of them in a quantum mechanical context is discussed. This point is nontrivial, accentuated in particular in connection with the Casimir effect. For comparison purposes, we present finally some results for heat dissipation taken from the theory of viscous cosmology.Peer reviewe

    Meson mass and confinement force driven by dilaton

    Full text link
    Meson spectra given as fluctuations of a D7 brane are studied under the background driven by the dilaton. This leads to a dual gauge theory with quark confinement due to the gauge condensate. We find that the effect of the gauge condensate on the meson spectrum is essential in order to make a realistic hadron spectrum in the non-supersymmetric case. In the supersymmetric case, however, only the spectra of the scalars are affected, but they are changed in an opposite way compared to the non-supersymmetric case.Comment: 11 pages, 2 figure

    Casimir Surface Force on a Dilute Dielectric Ball

    Get PDF
    The Casimir surface force density F on a dielectric dilute spherical ball of radius a, surrounded by a vacuum, is calculated at zero temperature. We treat (n-1) (n being the refractive index) as a small parameter. The dispersive properties of the material are taken into account by adopting a simple dispersion relation, involving a sharp high frequency cutoff at omega = omega_0. For a nondispersive medium there appears (after regularization) a finite, physical, force F^{nondisp} which is repulsive. By means of a uniform asymptotic expansion of the Riccati-Bessel functions we calculate F^{nondisp} up to the fourth order in 1/nu. For a dispersive medium the main part of the force F^{disp} is also repulsive. The dominant term in F^{disp} is proportional to (n-1)^2{omega_0}^3/a, and will under usual physical conditions outweigh F^{nondisp} by several orders of magnitude.Comment: 24 pages, latex, no figures, some additions to the Acknowledments sectio

    Finite Temperature Casimir Effect and Dispersion in the Presence of Compactified Extra Dimensions

    Full text link
    Finite temperature Casimir theory of the Dirichlet scalar field is developed, assuming that there is a conventional Casimir setup in physical space with two infinitely large plates separated by a gap R and in addition an arbitrary number q of extra compacified dimensions. As a generalization of earlier theory, we assume in the first part of the paper that there is a scalar 'refractive index' N filling the whole of the physical space region. After presenting general expressions for free energy and Casimir forces we focus on the low temperature case, as this is of main physical interest both for force measurements and also for issues related to entropy and the Nernst theorem. Thereafter, in the second part we analyze dispersive properties, assuming for simplicity q=1, by taking into account dispersion associated with the first Matsubara frequency only. The medium-induced contribution to the free energy, and pressure, is calculated at low temperatures.Comment: 25 pages, one figure. Minor changes in the discussion. Version to appear in Physica Script

    Epsilon-expansion in quantum field theory in curved spacetime

    Full text link
    We discuss epsilon-expansion in curved spacetime for asymptotically free and asymptotically non-free theories. The esistence of stable and unstable fixed points is investigated for fϕ4f \phi^4 and SU(2) gauge theory. It is shown that epsilon-expansion maybe compatible with asymptotic freedom on special solutions of the RG equations in a special case (supersymmetric theory). Using epsilon-expansion RG technique the effective Lagrangian for covariantly constant gauge SU(2) field and effective potential for gauged NJL-model are found in 4-epsilon- dimensional curved space (in linear curvature approximation). The curvature- induced phase transitions from symmetric phase to asymmetric phase (chromomagnetic vacuum and chiral symmetry broken phase, respectively) are discussed for the above two models.Comment: Latex file, 22 pages, July 1997 preprin

    Crossing of the w=-1 Barrier in Two-Fluid Viscous Modified Gravity

    Full text link
    Singularities in the dark energy late universe are discussed, under the assumption that the Lagrangian contains the Einstein term R plus a modified gravity term of the form R^\alpha, where \alpha is a constant. It is found, similarly as in the case of pure Einstein gravity [I. Brevik and O. Gorbunova, Gen. Rel. Grav. 37 (2005), 2039], that the fluid can pass from the quintessence region (w>-1) into the phantom region (w<-1) as a consequence of a bulk viscosity varying with time. It becomes necessary now, however, to allow for a two-fluid model, since the viscosities for the two components vary differently with time. No scalar fields are needed for the description of the passage through the phantom barrier.Comment: 16 pages latex, no figure

    Finite Temperature Casimir Effect in Randall-Sundrum Models

    Full text link
    The finite temperature Casimir effect for a scalar field in the bulk region of the two Randall-Sundrum models, RSI and RSII, is studied. We calculate the Casimir energy and the Casimir force for two parallel plates with separation aa on the visible brane in the RSI model. High-temperature and low-temperature cases are covered. Attractiveness versus repulsiveness of the temperature correction to the force is discussed in the typical special cases of Dirichlet-Dirichlet, Neumann-Neumann, and Dirichlet-Neumann boundary conditions at low temperature. The Abel-Plana summation formula is made use of, as this turns out to be most convenient. Some comments are made on the related contemporary literature.Comment: 33 pages latex, 2 figures. Some changes in the discussion. To appear in New J. Phy

    Ultrathin Metallic Coatings Can Induce Quantum Levitation between Nanosurfaces

    Get PDF
    There is an attractive Casimir-Lifshitz force between two silica surfaces in a liquid (bromobenze or toluene). We demonstrate that adding an ultrathin (5-50{\AA}) metallic nanocoating to one of the surfaces results in repulsive Casimir-Lifshitz forces above a critical separation. The onset of such quantum levitation comes at decreasing separations as the film thickness decreases. Remarkably the effect of retardation can turn attraction into repulsion. From that we explain how an ultrathin metallic coating may prevent nanoelectromechanical systems from crashing together.Comment: 4 pages, 5 figure

    Casimir Force on Real Materials - the Slab and Cavity Geometry

    Get PDF
    We analyse the potential of the geometry of a slab in a planar cavity for the purpose of Casimir force experiments. The force and its dependence on temperature, material properties and finite slab thickness are investigated both analytically and numerically for slab and walls made of aluminium and teflon FEP respectively. We conclude that such a setup is ideal for measurements of the temperature dependence of the Casimir force. By numerical calculation it is shown that temperature effects are dramatically larger for dielectrics, suggesting that a dielectric such as teflon FEP whose properties vary little within a moderate temperature range, should be considered for experimental purposes. We finally discuss the subtle but fundamental matter of the various Green's two-point function approaches present in the literature and show how they are different formulations describing the same phenomenon.Comment: 24 pages, 11 figures; expanded discussion, one appendix added, 1 new figure and 10 new references. To appear in J. Phys. A: Math. Theo

    Retardation turns the van der Waals attraction into Casimir repulsion already at 3 nm

    Get PDF
    Casimir forces between surfaces immersed in bromobenzene have recently been measured by Munday et al. Attractive Casimir forces were found between gold surfaces. The forces were repulsive between gold and silica surfaces. We show the repulsion is due to retardation effects. The van der Waals interaction is attractive at all separations. The retardation driven repulsion sets in already at around 3 nm. To our knowledge retardation effects have never been found at such a small distance before. Retardation effects are usually associated with large distances
    corecore