1,181 research outputs found

    FRUIT: Faithfully Reflecting Updated Information in Text

    Full text link
    Textual knowledge bases such as Wikipedia require considerable effort to keep up to date and consistent. While automated writing assistants could potentially ease this burden, the problem of suggesting edits grounded in external knowledge has been under-explored. In this paper, we introduce the novel generation task of *faithfully reflecting updated information in text* (FRUIT) where the goal is to update an existing article given new evidence. We release the FRUIT-WIKI dataset, a collection of over 170K distantly supervised data produced from pairs of Wikipedia snapshots, along with our data generation pipeline and a gold evaluation set of 914 instances whose edits are guaranteed to be supported by the evidence. We provide benchmark results for popular generation systems as well as EDIT5 -- a T5-based approach tailored to editing we introduce that establishes the state of the art. Our analysis shows that developing models that can update articles faithfully requires new capabilities for neural generation models, and opens doors to many new applications.Comment: v2.0, NAACL 202

    WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics

    Get PDF
    Prostate cancer cells with stem cell characteristics were identified in human prostate cancer cell lines by their ability to form from single cells self-renewing prostaspheres in non-adherent cultures. Prostaspheres exhibited heterogeneous expression of proliferation, differentiation and stem cell-associated makers CD44, ABCG2 and CD133. Treatment with WNT inhibitors reduced both prostasphere size and self-renewal. In contrast, addition of Wnt3a caused increased prostasphere size and self-renewal, which was associated with a significant increase in nuclear Β-catenin, keratin 18, CD133 and CD44 expression. As a high proportion of LNCaP and C4-2B cancer cells express androgen receptor we determined the effect of the androgen receptor antagonist bicalutamide. Androgen receptor inhibition reduced prostasphere size and expression of PSA, but did not inhibit prostasphere formation. These effects are consistent with the androgen-independent self-renewal of cells with stem cell characteristics and the androgen-dependent proliferation of transit amplifying cells. As the canonical WNT signaling effector Β-catenin can also associate with the androgen receptor, we propose a model for tumour propagation involving a balance between WNT and androgen receptor activity. That would affect the self-renewal of a cancer cell with stem cell characteristics and drive transit amplifying cell proliferation and differentiation. In conclusion, we provide evidence that WNT activity regulates the self-renewal of prostate cancer cells with stem cell characteristics independently of androgen receptor activity. Inhibition of WNT signaling therefore has the potential to reduce the self-renewal of prostate cancer cells with stem cell characteristics and improve the therapeutic outcome.Peer reviewe

    On nonsupersymmetric \BC^4/\BZ_N, tachyons, terminal singularities and flips

    Full text link
    We investigate nonsupersymmetric \BC^4/\BZ_N orbifold singularities using their description in terms of the string worldsheet conformal field theory and its close relation with the toric geometry description of these singularities and their possible resolutions. Analytic and numerical study strongly suggest the absence of nonsupersymmetric Type II terminal singularities (i.e. with no marginal or relevant blowup modes) so that there are always moduli or closed string tachyons that give rise to resolutions of these singularities, although supersymmetric and Type 0 terminal singularities do exist. Using gauged linear sigma models, we analyze the phase structure of these singularities, which often involves 4-dimensional flip transitions, occurring between resolution endpoints of distinct topology. We then discuss 4-dim analogs of unstable conifold-like singularities that exhibit flips, in particular their Type II GSO projection and the phase structure. We also briefly discuss aspects of M2-branes stacked at such singularities and nonsupersymmetric AdS_4\times S^7/\BZ_N backgrounds.Comment: Latex, 43pgs incl. appendices, 2 eps figs, v2. minor clarifications added, to appear in JHE

    Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast

    Get PDF
    Acknowledgments We thank Rebecca Shapiro for creating CaLC1819, CaLC1855 and CaLC1875, Gillian Milne for help with EM, Aaron Mitchell for generously providing the transposon insertion mutant library, Jesus Pla for generously providing the hog1 hst7 mutant, and Cathy Collins for technical assistance.Peer reviewedPublisher PD

    Stoichiometry of Base Excision Repair Proteins Correlates with Increased Somatic CAG Instability in Striatum over Cerebellum in Huntington's Disease Transgenic Mice

    Get PDF
    Huntington's disease (HD) is a progressive neurodegenerative disorder caused by expansion of an unstable CAG repeat in the coding sequence of the Huntingtin (HTT) gene. Instability affects both germline and somatic cells. Somatic instability increases with age and is tissue-specific. In particular, the CAG repeat sequence in the striatum, the brain region that preferentially degenerates in HD, is highly unstable, whereas it is rather stable in the disease-spared cerebellum. The mechanisms underlying the age-dependence and tissue-specificity of somatic CAG instability remain obscure. Recent studies have suggested that DNA oxidation and OGG1, a glycosylase involved in the repair of 8-oxoguanine lesions, contribute to this process. We show that in HD mice oxidative DNA damage abnormally accumulates at CAG repeats in a length-dependent, but age- and tissue-independent manner, indicating that oxidative DNA damage alone is not sufficient to trigger somatic instability. Protein levels and activities of major base excision repair (BER) enzymes were compared between striatum and cerebellum of HD mice. Strikingly, 5′-flap endonuclease activity was much lower in the striatum than in the cerebellum of HD mice. Accordingly, Flap Endonuclease-1 (FEN1), the main enzyme responsible for 5′-flap endonuclease activity, and the BER cofactor HMGB1, both of which participate in long-patch BER (LP–BER), were also significantly lower in the striatum compared to the cerebellum. Finally, chromatin immunoprecipitation experiments revealed that POLβ was specifically enriched at CAG expansions in the striatum, but not in the cerebellum of HD mice. These in vivo data fit a model in which POLβ strand displacement activity during LP–BER promotes the formation of stable 5′-flap structures at CAG repeats representing pre-expanded intermediate structures, which are not efficiently removed when FEN1 activity is constitutively low. We propose that the stoichiometry of BER enzymes is one critical factor underlying the tissue selectivity of somatic CAG expansion

    Involvement of glomerular renin−angiotensin system (RAS) activation in the development and progression of glomerular injury

    Get PDF
    Recently, there has been a paradigm shift away from an emphasis on the role of the endocrine (circulating) renin−angiotensin system (RAS) in the regulation of the sodium and extracellular fluid balance, blood pressure, and the pathophysiology of hypertensive organ damage toward a focus on the role of tissue RAS found in many organs, including kidney. A tissue RAS implies that RAS components necessary for the production of angiotensin II (Ang II) reside within the tissue and its production is regulated within the tissue, independent of the circulating RAS. Locally produced Ang II plays a role in many physiological and pathophysiological processes such as hypertension, inflammation, oxidative stress, and tissue fibrosis. Both glomerular and tubular compartments of the kidney have the characteristics of a tissue RAS. The purpose of this article is to review the recent advances in tissue RAS research with a particular focus on the role of the glomerular RAS in the progression of renal disease
    corecore