16 research outputs found

    Molecular Variation at the SLC6A3 Locus Predicts Lifetime Risk of PTSD in the Detroit Neighborhood Health Study

    Get PDF
    Recent work suggests that the 9-repeat (9R) allele located in the 3′UTR VNTR of the SLC6A3 gene increases risk of posttraumatic stress disorder (PTSD). However, no study reporting this association to date has been based on population-based samples. Furthermore, no study of which we are aware has assessed the joint action of genetic and DNA methylation variation at SLC6A3 on risk of PTSD. In this study, we assessed whether molecular variation at SLC6A3 locus influences risk of PTSD. Participants (n = 320; 62 cases/258 controls) were drawn from an urban, community-based sample of predominantly African American Detroit adult residents, and included those who had completed a baseline telephone survey, had provided blood specimens, and had a homozygous genotype for either the 9R or 10R allele or a heterozygous 9R/10R genotype. The influence of DNA methylation variation in the SLC6A3 promoter locus was also assessed in a subset of participants with available methylation data (n = 83; 16 cases/67 controls). In the full analytic sample, 9R allele carriers had almost double the risk of lifetime PTSD compared to 10R/10R genotype carriers (OR = 1.98, 95% CI = 1.02–3.86), controlling for age, sex, race, socioeconomic status, number of traumas, smoking, and lifetime depression. In the subsample of participants with available methylation data, a significant (p = 0.008) interaction was observed whereby 9R allele carriers showed an increased risk of lifetime PTSD only in conjunction with high methylation in the SLC6A3 promoter locus, controlling for the same covariates. Our results confirm previous reports supporting a role for the 9R allele in increasing susceptibility to PTSD. They further extend these findings by providing preliminary evidence that a “double hit” model, including both a putatively reduced-function allele and high methylation in the promoter region, may more accurately capture molecular risk of PTSD at the SLC6A3 locus

    Prospective evaluation of 92 serum protein biomarkers for early detection of ovarian cancer

    Get PDF
    Background CA125 is the best available yet insufficiently sensitive biomarker for early detection of ovarian cancer. There is a need to identify novel biomarkers, which individually or in combination with CA125 can achieve adequate sensitivity and specificity for the detection of earlier-stage ovarian cancer. Methods In the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, we measured serum levels of 92 preselected proteins for 91 women who had blood sampled ≤18 months prior to ovarian cancer diagnosis, and 182 matched controls. We evaluated the discriminatory performance of the proteins as potential early diagnostic biomarkers of ovarian cancer. Results Nine of the 92 markers; CA125, HE4, FOLR1, KLK11, WISP1, MDK, CXCL13, MSLN and ADAM8 showed an area under the ROC curve (AUC) of ≥0.70 for discriminating between women diagnosed with ovarian cancer and women who remained cancer-free. All, except ADAM8, had shown at least equal discrimination in previous case-control comparisons. The discrimination of the biomarkers, however, was low for the lag-time of >9–18 months and paired combinations of CA125 with any of the 8 markers did not improve discrimination compared to CA125 alone. Conclusion Using pre-diagnostic serum samples, this study identified markers with good discrimination for the lag-time of 0–9 months. However, the discrimination was low in blood samples collected more than 9 months prior to diagnosis, and none of the markers showed major improvement in discrimination when added to CA125

    The association between race and treatment regret among men with recurrent prostate cancer

    No full text
    BACKGROUND: To examine the impact of race on treatment regret among men with recurrent prostate cancer after surgery or radiation. METHODS: The prospective Comprehensive, Observational, Multicenter, Prostate Adenocarcinoma (COMPARE) registry was used to study a cohort of 484 men with biochemically recurrent prostate cancer after radical prostatectomy, external beam radiation or brachytherapy. Multivariable logistic regression was used to model the association between race and treatment regret and to determine whether there was an interaction between race and sexual problems after treatment with regards to treatment regret. RESULTS: Black men (N = 78) were significantly more likely to have treatment regret when compared with non-black men (N = 406; 21.8% versus 12.6%) on univariable analysis (odds ratio (OR) 1.94; 95% confidence interval 1.05–3.56; P = 0.03). On multivariable analysis, black race trended towards but was no longer significantly associated with an increase in treatment regret (adjusted OR (AOR) 1.84 (0.95–3.58); P = 0.071). There was an interaction between race and sexual problems after treatment (P(interaction) = 0.02) such that among those without sexual problems, black men had more treatment regret than non-black men (26.7% versus 8.4%: AOR 4.68 (1.73–12.63); P = 0.002), whereas among those with sexual problems, there was no difference in treatment regret between black and non-black men (18.8% versus 17.3%: AOR 1.04 (0.44–2.46); P = 0.93). CONCLUSIONS: Among men with recurrent prostate cancer after surgery or radiation, black men were nearly twice as likely to experience treatment regret. Treating physicians should ensure that patients are fully apprised of the pros and cons of all treatment options to reduce the risk of subsequent regret

    Dietary and circulating fatty acids and ovarian cancer risk in the European Prospective investigation into cancer and nutrition

    No full text
    Background: Fatty acids impact obesity, estrogens, and inflammation, which are risk factors for ovarian cancer. Few epidemiologic studies have investigated the association of fatty acids with ovarian cancer. Methods: Within the European Prospective Investigation into Cancer and Nutrition (EPIC), 1,486 incident ovarian cancer cases were identified. Cox proportional hazard models with adjustment for ovarian cancer risk factors were used to estimate HRs of ovarian cancer across quintiles of intake of fatty acids. False discovery rate was computed to control for multiple testing. Multivariable conditional logistic regression models were used to estimate ORs of ovarian cancer across tertiles of plasma fatty acids among 633 cases and two matched controls in a nested case–control analysis. Results: A positive association was found between ovarian cancer and intake of industrial trans elaidic acid [HR comparing fifth with first quintileQ5-Q1 = 1.29; 95% confidence interval (CI) = 1.03–1.62; Ptrend = 0.02, q-value = 0.06]. Dietary intakes of n-6 linoleic acid (HRQ5-Q1 = 1.10; 95% CI = 1.01–1.21; Ptrend = 0.03) and n-3 α-linolenic acid (HRQ5-Q1 = 1.18; 95% CI = 1.05–1.34; Ptrend = 0.007) from deep-frying fats were also positively associated with ovarian cancer. Suggestive associations were reported for circulating elaidic (OR comparing third with first tertileT3-T1 = 1.39; 95% CI = 0.99–1.94; Ptrend = 0.06) and α-linolenic acids (ORT3-T1 = 1.30; 95% CI = 0.98–1.72; Ptrend = 0.06). Conclusions: Our results suggest that higher intakes and circulating levels of industrial trans elaidic acid, and higher intakes of linoleic acid and α-linolenic acid from deep-frying fat, may be associated with greater risk of ovarian cancer. Impact: If causal, eliminating industrial trans-fatty acids could offer a straightforward public health action for reducing ovarian cancer risk.</p

    SRSF1 haploinsufficiency is responsible for a syndromic developmental disorder associated with intellectual disability

    No full text
    : SRSF1 (also known as ASF/SF2) is a non-small nuclear ribonucleoprotein (non-snRNP) that belongs to the arginine/serine (R/S) domain family. It recognizes and binds to mRNA, regulating both constitutive and alternative splicing. The complete loss of this proto-oncogene in mice is embryonically lethal. Through international data sharing, we identified 17 individuals (10 females and 7 males) with a neurodevelopmental disorder (NDD) with heterozygous germline SRSF1 variants, mostly de novo, including three frameshift variants, three nonsense variants, seven missense variants, and two microdeletions within region 17q22 encompassing SRSF1. Only in one family, the de novo origin could not be established. All individuals featured a recurrent phenotype including developmental delay and intellectual disability (DD/ID), hypotonia, neurobehavioral problems, with variable skeletal (66.7%) and cardiac (46%) anomalies. To investigate the functional consequences of SRSF1 variants, we performed in silico structural modeling, developed an in vivo splicing assay in Drosophila, and carried out episignature analysis in blood-derived DNA from affected individuals. We found that all loss-of-function and 5 out of 7 missense variants were pathogenic, leading to a loss of SRSF1 splicing activity in Drosophila, correlating with a detectable and specific DNA methylation episignature. In addition, our orthogonal in silico, in vivo, and epigenetics analyses enabled the separation of clearly pathogenic missense variants from those with uncertain significance. Overall, these results indicated that haploinsufficiency of SRSF1 is responsible for a syndromic NDD with ID due to a partial loss of SRSF1-mediated splicing activity

    The Psychiatric Genomics Consortium Posttraumatic Stress Disorder Workgroup: Posttraumatic Stress Disorder Enters the Age of Large-Scale Genomic Collaboration

    No full text
    The development of posttraumatic stress disorder (PTSD) is influenced by genetic factors. Although there have been some replicated candidates, the identification of risk variants for PTSD has lagged behind genetic research of other psychiatric disorders such as schizophrenia, autism, and bipolar disorder. Psychiatric genetics has moved beyond examination of specific candidate genes in favor of the genome-wide association study (GWAS) strategy of very large numbers of samples, which allows for the discovery of previously unsuspected genes and molecular pathways. The successes of genetic studies of schizophrenia and bipolar disorder have been aided by the formation of a large-scale GWAS consortium: the Psychiatric Genomics Consortium (PGC). In contrast, only a handful of GWAS of PTSD have appeared in the literature to date. Here we describe the formation of a group dedicated to large-scale study of PTSD genetics: the PGC-PTSD. The PGC-PTSD faces challenges related to the contingency on trauma exposure and the large degree of ancestral genetic diversity within and across participating studies. Using the PGC analysis pipeline supplemented by analyses tailored to address these challenges, we anticipate that our first large-scale GWAS of PTSD will comprise over 10 000 cases and 30 000 trauma-exposed controls. Following in the footsteps of our PGC forerunners, this collaboration—of a scope that is unprecedented in the field of traumatic stress—will lead the search for replicable genetic associations and new insights into the biological underpinnings of PTSD
    corecore