84 research outputs found

    Hardware-in-the-loop performance analysis of a railway traction system under sensor faults

    Get PDF
    Fault mode and effects analysis (FMEA) has been used during decades for analysing the effects of faults in different applications. Initially, FMEA based on risk priority numbers provided information about the effects in the system, but during the last years different approaches have been developed to obtain a more robust risk evaluation. The proposed enhanced FMEA can provide the quantitative effects of sensor faults in a railway traction drive, in variables such as torque, current and voltages. In addition to the previous work, quantitative effects on overall performance indicators, such as energy efficiency and comfort, are obtained too. Hardware-in-the-loop (HIL)-based fault injection approach has been used to generate fault scenarios. The test platform is composed of a real-time simulator and a commercial traction control unit for a railway application

    Cycling comfort on asphalt pavement: Influence of the pavement-tyre interface on vibration

    Get PDF
    Attainment of cycling comfort on urban roads encourages travelers to use bicycles more often, which has social and environment benefits such as to reduce congestion, air pollution and carbon emissions. Cycling vibration is responsible for the cyclists’ perception of (dis)comfort. How asphalt pavement's surface characteristics relate to cycling comfort, however, remains undiscovered. In this study, the cycling vibration intensity on 46 sections of 24 urban roads was tested using a dynamic cycling comfort measure system while the cyclists’ perception of vibration was identified via questionnaires; the cycling comfort was then defined based on the cycling vibration. To record the accurate pavement-tyre interface under a stable environment, a total of 19 pavement sections were scanned using a 3D digital camera. These 3D models were then 3D printed, which are used to conduct the pressure film test using a self-developed pavement-tyre interface test system. Three ranges of pressure films were adopted to characterize the pavement-tyre interface via 9 parameters, namely contact area (A c ), unit bearing area (B u ), stress intensity (S i ), stress uniformity (S u ), kurtosis (S ku ), spacing (Sp a ), maximum peak spacing (Sp max ), radius ratio (R r ) and fractal dimension (F d ), in consideration of the area characteristics, pressure amplitude, peak spacing and shape of the interface. Finally, the significant interface parameters were identified, and the regression model between interface parameters and cycling comfort was established. Results show that the cycling vibration was described to be ‘very comfortable’ when the human exposure to vibration level (a wv ) was less than 1.78 m/s 2 ; ‘comfortable’ when the a wv was between 1.78 m/s 2 and 2.20 m/s 2 ; and ‘uncomfortable’ when the a wv was greater than 2.20 m/s 2 . The average stress on rear wheel-pavement interface is higher than that of the front wheel. B u-0.6 , Sp a-0.6 , and F d-0.6 are significant to cycling vibration. The 2LW pressure film is recommended for use to measure the bicycle pavement-tyre interface. The recommended interface characteristics are less than 7 mm 2 of the unit bearing area, 6 mm of average spacing and 2.38 of fractal dimension. Finally, dense asphalt mixture performs better in providing cycling comfort than the gap-graded asphalt mixture. Results of this study contribute to current knowledge on bike lane comfort and pavement design, the findings should be interested in cyclists, transport planners, and road authorities

    GA-based multi-objective optimization of active nonlinear quarter car suspension system—PID and fuzzy logic control

    Get PDF
    Background The primary function of a suspension system is to isolate the vehicle body from road irregularities thus providing the ride comfort and to support the vehicle and provide stability. The suspension system has to perform conflicting requirements; hence, a passive suspension system is replaced by the active suspension system which can supply force to the system. Active suspension supplies energy to respond dynamically and achieve relative motion between body and wheel and thus improves the performance of suspension system. Methods This study presents modelling and control optimization of a nonlinear quarter car suspension system. A mathematical model of nonlinear quarter car is developed and simulated for control and optimization in Matlab/Simulink¼ environment. Class C road is selected as input road condition with the vehicle traveling at 80 kmph. Active control of the suspension system is achieved using FLC and PID control actions. Instead of guessing and or trial and error method, genetic algorithm (GA)-based optimization algorithm is implemented to tune PID parameters and FLC membership functions’ range and scaling factors. The optimization function is modeled as a multi-objective problem comprising of frequency weighted RMS seat acceleration, Vibration dose value (VDV), RMS suspension space, and RMS tyre deflection. ISO 2631-1 standard is adopted to assess the ride and health criterion. Results The nonlinear quarter model along with the controller is modeled and simulated and optimized in a Matlab/Simulink environment. It is observed that GA-optimized FLC gives better control as compared to PID and passive suspension system. Further simulations are validated on suspension system with seat and human model. Parameters under observation are frequency-weighted RMS head acceleration, VDV at the head, crest factor, and amplitude ratios at the head and upper torso (AR_h and AR_ut). Simulation results are presented in time and frequency domain. Conclusion Simulation results show that GA-based FLC and PID controller gives better ride comfort and health criterion by reducing RMS head acceleration, VDV at the head, CF, and AR_h and AR_ut over passive suspension system

    A Nonlinear Vehicle-Road Coupled Model for Dynamics Research

    No full text
    • 

    corecore